分析 (1)根据函数解析式得到函数的图象,根据图象分别找到图象上升和下降的部分,即可得到单调区间;
(2)作出直线y=-m,f(x)+m=0有三个不同的零点等价于函数y=-m和函数y=f(x)的图象恰有三个不同的交点.
解答
解:(1)作出 f(x)的图象.如右图所示….(4分)
由图象可知该函数的单调减区间为(-1,1),(2,+∞)…(6分)
(2)作出直线y=-m,f(x)+m=0有三个不同的零点等价于函数y=-m和函数y=f(x)的图象恰有三个不同的交点…(8分)
由y=f(x)的图象可知,-m∈(-1,0)…(11分)
∴m∈(0,1)…(12分)
点评 本题考查分段函数的应用,考查函数的零点,以及函数的图象,由图象求得单调区间,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $m≤\frac{1}{2}$ | B. | $m<\frac{1}{2}$ | C. | $m≥\frac{1}{2}$ | D. | $m>\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({\frac{1}{3},1})$ | B. | $({-∞,\frac{1}{3}})∪({1,+∞})$ | C. | (-$\frac{1}{3}$,$\frac{1}{3}$) | D. | $({-∞,-\frac{1}{3}})∪({\frac{1}{3},+∞})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{\sqrt{3}}{6}$ | C. | $\frac{1}{3}$ | D. | $\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com