精英家教网 > 高中数学 > 题目详情

【题目】某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:

单价x(元)

8

8.2

8.4

8.6

8.8

9

销量y(件)

90

84

83

80

75

68

单价x(元)

8

8.2

8.4

8.6

8.8

9

销量y(件)

90

84

83

80

75

68

(1)求回归直线方程其中

(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)

【答案】(1)=-20x+250.(2)8.25

【解析】试题分析:(1)计算,根据回归直线方程过样本中心点求出a的值,写出回归直线方程;

(2)设工厂获得的利润为L元,利用回归直线方程写出L的利润函数,求出最大值即可.

试题解析:

解:(1)由于 (8+8.2+8.4+8.6+8.8+9)=8.5,

(90+84+83+80+75+68)=80.

所以=-20,=80+20×8.5=250,

从而回归直线方程为=-20x+250.

(2)设工厂获得的利润为L元,依题意得

Lx(-20x+250)-4(-20x+250)

=-20x2+330x-1 000

=-202+361.25.

当且仅当x=8.25时,L取得最大值.

故当单价定为8.25元时,工厂可获得最大利润.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知正项数列{an},其前n项和Sn满足6Sn=an2+3an+2,且a1 , a2 , a6是等比数列{bn}的前三项.
(1)求数列{an}与{bn}的通项公式;
(2)记Tn=a1b1+a2b2+…+anbn , n∈N*,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为2 ,四边形BDEF是平行四边形,BD与AC交于点G,O为GC的中点,且FO⊥平面ABCD,FO=

(1)求BF与平面ABCD所成的角的正切值;
(2)求三棱锥O﹣ADE的体积;
(3)求证:平面AEF⊥平面BCF.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xiyi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是( )

A. yx具有正的线性相关关系

B. 若给变量x一个值,由回归直线方程=0.85x-85.71得到一个,则为该统计量中的估计值

C. 若该大学某女生身高增加1 cm,则其体重约增加0.85 kg

D. 若该大学某女生身高为170 cm,则可断定其体重必为58.79 kg

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得 =80, =20, i=184, =720.

(1)求家庭的月储蓄y对月收入x的线性回归方程

(2)判断变量xy之间是正相关还是负相关;

(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.

附:线性回归方程中, ,其中为样本平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为 ,数列满足在直线上.

(1)求数列 的通项

(2)令,求数列的前项和

(3)若,求对所有的正整数都有成立的的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面向量 =(1,x), =(2x+3,﹣x)(x∈R).
(1)若 ,求| |
(2)若 夹角为锐角,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,ABCD﹣A1B1C1D1是棱长为a的正方体,M、N分别是下底面的棱A1B1 , B1C1的中点,P是上底面的棱AD上的一点,AP= ,过P、M、N的平面交上底面于PQ,Q在CD上,则PQ=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的角所对的边份别为,且

1求角的大小;

2,求的周长的取值范围

查看答案和解析>>

同步练习册答案