【题目】中国古代数学著作《九章算术》中有一个这样的问题:“某贾人擅营,月入益功疾(注:从第2月开始,每月比前一月多入相同量的铜钱,3月入25贯,全年(按12个月计)共入510贯“,则该人每月比前一月多入_________________贯,第12月营收贯数为_________________.
科目:高中数学 来源: 题型:
【题目】当我们所处的北半球为冬季的时候,新西兰的惠灵顿市恰好是盛夏,因此北半球的人们冬天愿意去那里旅游,下面是一份惠灵顿机场提供的月平均气温统计表.
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| 17.3 | 17.9 | 17.3 | 15.8 | 13.7 | 11.6 | 10.06 | 9.5 | 10.06 | 11.6 | 13.7 | 15.8 |
(1)根据这个统计表提供的数据,为惠灵顿市的月平均气温作出一个函数模型;
(2)当自然气温不低于13.7℃时,惠灵顿市最适宜旅游,试根据你所确定的函数模型,确定惠灵顿市的最佳旅游时间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】十九大提出,加快水污染防治,建设美丽中国.根据环保部门对某河流的每年污水排放量
(单位:吨)的历史统计数据,得到如下频率分布表:
![]()
将污水排放量落入各组的频率作为概率,并假设每年该河流的污水排放量相互独立.
(1)求在未来3年里,至多1年污水排放量
的概率;(2)该河流的污水排放对沿河的经济影响如下:当
时,没有影响;当
时,经济损失为10万元;当
时,经济损失为60万元.为减少损失,现有三种应对方案:
方案一:防治350吨的污水排放,每年需要防治费3.8万元;
方案二:防治310吨的污水排放,每年需要防治费2万元;
方案三:不采取措施.
试比较上述三种文案,哪种方案好,并请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若
、
是两个相交平面,则在下列命题中,真命题的序号为( )
①若直线
,则在平面
内一定不存在与直线
平行的直线.
②若直线
,则在平面
内一定存在无数条直线与直线
垂直.
③若直线
,则在平面
内不一定存在与直线
垂直的直线.
④若直线
,则在平面
内一定存在与直线
垂直的直线.
A. ①③ B. ②③ C. ②④ D. ①④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列命题:
①命题“若
,则方程
无实根”的否命题;
②命题“在
中,
,那么
为等边三角形”的逆命题;
③命题“若
,则
”的逆否命题;
④“若
,则
的解集为
”的逆命题;
其中真命题的序号为( )
A.①②③④B.①②④C.②④D.①②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《九章算术》中有云:“有木长三丈,围之八尺,葛生其下,缠木两周,上与木齐,问葛长几何?”意思为:圆木长3丈,圆周为8尺,葛藤从圆木的底部开始向上生长,绕圆木两周,刚好顶部与圆木平齐,问葛藤最少长几尺(注:1丈即10尺)?该问题的答案为34尺.若圆木长为3尺,圆周为2尺,同样绕圆木两周刚好顶部与圆木平齐,那葛藤最少又是长( )尺?
A.34尺B.5尺C.6尺D.4尺
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了适应高考改革,某中学推行“创新课堂”教学.高一平行甲班采用“传统教学”的教学方式授课,高一平行乙班采用“创新课堂”的教学方式授课,为了比较教学效果,期中考试后,分别从两个班中各随机抽取
名学生的成绩进行统计分析,结果如下表:(记成绩不低于
分者为“成绩优秀”)
分数 |
|
|
|
|
|
|
|
甲班频数 |
|
|
|
|
|
|
|
乙班频数 |
|
|
|
|
|
|
|
(Ⅰ)由以上统计数据填写下面的
列联表,并判断是否有
以上的把握认为“成绩优秀与教学方式有关”?
甲班 | 乙班 | 总计 | |
成绩优秀 | |||
成绩不优秀 | |||
总计 |
(Ⅱ)现从上述样本“成绩不优秀”的学生中,抽取
人进行考核,记“成绩不优秀”的乙班人数为
,求
的分布列和期望.
参考公式:
,其中
.
临界值表
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某电信公司为了加强新用5G技术的推广使用,为该公司的用户制定了一套5G月消费返流量费的套餐服务方案;当月消费金额不超过100元时,按消费金额的
进行返还;当月消费金额超过100元时,除消费金额中的100元仍按
进行返还外,若另超出100元的部分消费金额为A元,则超过部分按
进行返还,记用户当月返还所得流量费y(单位:元),消费金额x(单位:元)
(1)写出该公司用户月返还所得流量费的函数模型;
(2)如果用户小李当月获返还的流量费是12元,那么他这个月的消费金额是多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆
与一等轴双曲线相交,
是其中一个交点,并且双曲线的顶点是该椭圆的焦点
,
,双曲线的焦点是椭圆的左、右顶点,设
为该双曲线上异于顶点的任意一点,直线
的斜率分别为
,且直线
和
与椭圆的交点分别为
、
和
、
.
![]()
(1)求椭圆和双曲线的标准方程;
(2)(i)证明:
;
(ii)是否存在常数
,使得
恒成立?若存在,求
的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com