精英家教网 > 高中数学 > 题目详情
已知命题p:x2+4x>0q:¬p是¬q的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
【答案】分析:分别求出命题所对应的集合,利用其包含关系进行判断.
解答:解:命题¬p对应的集合A为[-4,0],命题¬q对应的集合B为[-4,0]∪[4,+∞),
由于A⊆B,所以¬p是¬q的充分不必要条件,
故选A.
点评:运用集合思想来判断充分条件和必要条件是一种行之有效的方法.要注意用集合的观点来看四种条件,体现数形结合的思想
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

1、已知命题p:x2-2x-15≤0,命题q:x2-2x-m2+1≤0,且?p是?q的必要不充分条件,则实数m的取值范围为
m<-4或m>4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:x2+x+2-m=0有一正一负两根,命题q:4x2+4(m-2)x+1=0无实根,若命题p与命题q有且只有一个为真,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:x2≤5x-4,命题q:x2-(a+2)x+2a≤0
(1)求命题p中对应x的范围;
(2)若p是q的必要不充分条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:x2-3x-4≤0;q:(x-1)2-a2≥0(a>0).若p是?q的充分不必要条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:|x-4|≤6构成集合为A,q:x2-2x+1-a2≤0(a>0)构成集合为B
(1)求集合A,B
(2)若非p是非q的必要不充分条件,求a的取值范围.

查看答案和解析>>

同步练习册答案