精英家教网 > 高中数学 > 题目详情

已知双曲线mx2-ny2=1(m>0,n>0)的离心率为2,则椭圆mx2+ny2=1的离心率为(  )

(A) (B) (C) (D)

 

B

【解析】由已知双曲线的离心率为2,:

=2,

解得m=3n,m>0,n>0,

m>n,>,

故由椭圆mx2+ny2=1+=1.

∴所求椭圆的离心率为e===.

【误区警示】本题极易造成误选而失分,根本原因是由于将椭圆mx2+ny2=1焦点所在位置弄错,从而把a求错造成

 

练习册系列答案
相关习题

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业八十一选修4-5第三节练习卷(解析版) 题型:解答题

a,b,c均为正数,证明:++a+b+c.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十六第八章第七节练习卷(解析版) 题型:选择题

过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线共有(  )

(A)1(B)2(C)3(D)4

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十八第八章第九节练习卷(解析版) 题型:选择题

已知以F1(-2,0),F2(2,0)为焦点的椭圆与直线x+y+4=0有且仅有一个交点,则椭圆的长轴长为(  )

(A)3   (B)2   (C)2   (D)4

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十五第八章第六节练习卷(解析版) 题型:选择题

已知点F1,F2分别是双曲线-=1的左、右焦点,F1且垂直于x轴的直线与双曲线交于A,B两点,若△ABF2为锐角三角形,则该双曲线的离心率e的取值范围是(  )

(A)(1,1+) (B)(1,)

(C)(+1,+) (D)(-,1+)

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十二第八章第三节练习卷(解析版) 题型:填空题

设圆C同时满足三个条件:①过原点;②圆心在直线y=x

;③截y轴所得的弦长为4,则圆C的方程是    .

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十二第八章第三节练习卷(解析版) 题型:选择题

P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是(  )

(A)(x-2)2+(y+1)2=1 (B)(x-2)2+(y+1)2=4

(C)(x+4)2+(y-2)2=4 (D)(x+2)2+(y-1)2=1

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十九第八章第十节练习卷(解析版) 题型:选择题

若以椭圆上一点和两个焦点为顶点的三角形面积的最大值为1,则椭圆长轴的最小值为(  )

(A)1 (B) (C)2 (D)2

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十一第八章第二节练习卷(解析版) 题型:选择题

设△ABC的一个顶点是A(3,-1),B,C的平分线方程分别为x=0,y=x,则直线BC的方程为(  )

(A)y=2x+5 (B)y=2x+3

(C)y=3x+5 (D)y=-x+

 

查看答案和解析>>

同步练习册答案