精英家教网 > 高中数学 > 题目详情
14.设c1,c2,…,cn是a1,a2,…,an的某一排列(a1,a2,…,an均为正数),则$\frac{{a}_{1}}{{c}_{1}}$+$\frac{{a}_{2}}{{c}_{2}}$+…+$\frac{{a}_{n}}{{c}_{n}}$的最小值是(  )
A.2nB.$\frac{1}{n}$C.$\sqrt{n}$D.n

分析 利用均值不等式即可得出.

解答 解:∵c1,c2,…,cn是a1,a2,…,an的某一排列(a1,a2,…,an均为正数),
则$\frac{{a}_{1}}{{c}_{1}}$+$\frac{{a}_{2}}{{c}_{2}}$+…+$\frac{{a}_{n}}{{c}_{n}}$≥n$\root{n}{\frac{{a}_{1}}{{c}_{1}}•\frac{{a}_{2}}{{c}_{2}}•…•\frac{{a}_{n}}{{c}_{n}}}$=n,当且仅当$\frac{{a}_{1}}{{c}_{1}}=\frac{{a}_{2}}{{c}_{2}}$=…=$\frac{{a}_{n}}{{c}_{n}}$时取等号.
故选:D.

点评 本题考查了均值不等式的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知sin(π-θ)<0,cos(π+θ)<0,则角θ所在的象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知数列{an}的前n项和为Sn,且满足a1=$\frac{1}{2}$,2an+1-2an=1,则$\frac{S_n}{a_n}$=$\frac{n+1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知椭圆的长轴长是8,焦距为6,则此椭圆的标准方程是(  )
A.$\frac{x^2}{16}+\frac{y^2}{9}=1$B.$\frac{x^2}{16}+\frac{y^2}{7}$=1或$\frac{x^2}{7}+\frac{y^2}{16}=1$
C.$\frac{x^2}{16}+\frac{y^2}{25}=1$D.$\frac{x^2}{16}+\frac{y^2}{25}=1$或$\frac{x^2}{25}+\frac{y^2}{16}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求过椭圆x2+4y2=16内一点A(1,1)的弦PO的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.点M(x,y)在椭圆$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{4}$=1上,则点M到直线x+y-4=0的距离的最大值为4$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,某单位用木料制作如图所示的框架,框架的下部是边长为x,y(单位:m)的矩形,上部是等腰直角三角形,要求框架围成的总面积是8m2
(1)求x,y的关系式,并求x的取值范围;
(2)问x,y分别为多少时用料最省?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)定义域为[-1,1],若对于任意的x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0时,有f(x)>0.
(1)证明:f(x)为奇函数;
(2)证明:f(x)在[-1,1]上单调递增;
(3)设f(1)=1,若f(x)<m-2am+2,对所有x∈[-1,1],a∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某产品的广告支出x(单位:万元)与销售收入y(单位:万元)之间有下表所对应的数据:
广告支出x(单位:万元)1234
销售收入y(单位:万元)12284256
(Ⅰ)求出y对x的线性回归方程;
(Ⅱ)若广告费为9万元,则销售收入约为多少万元?
(线性回归方程系数公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

同步练习册答案