精英家教网 > 高中数学 > 题目详情
9.求过椭圆x2+4y2=16内一点A(1,1)的弦PO的中点M的轨迹方程.

分析 设出P、Q、M的坐标,把P、Q坐标代入椭圆方程,利用点差法得到PQ所在直线斜率,由向量相等得弦PO的中点M的轨迹方程.

解答 解:设点P(x1,y1),Q(x2,y2),M(x,y).
则$\left\{\begin{array}{l}{x_1}^2+4{y_1}^2=16\\{x_1}^2+4{y_1}^2=16\end{array}\right.$,
两式作差得:(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0,
当x1≠x2时,有$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}=-\frac{{x}_{1}+{x}_{2}}{4({y}_{1}+{y}_{2})}=-\frac{2x}{8y}=-\frac{x}{4y}$,
又$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}=\frac{y-1}{x-1}$,则$\frac{y-1}{x-1}=-\frac{x}{4y}$,
得x2+4y2-x-4y=0;
当x1=x2时,M(1,0)满足上式.
综上点M的轨迹方程是x2+4y2-x-4y=0.

点评 本题考查轨迹方程的求法,训练了利用“点差法”求与弦中点有关的问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow m=({{{log}_{\frac{1}{3}}}x,1-f(x)})$,$\overrightarrow n=({1,2+{{log}_3}x})$,且向量$\overrightarrow m$∥$\overrightarrow n$.
(Ⅰ)求函数y=f(x)的解析式及函数$y=f(cos(2x-\frac{π}{3}))$的定义域;
(Ⅱ)若函数g(θ)=-cos2θ-asinθ+2,存在a∈R,对任意${x_1}∈[{\frac{1}{27},3}]$,总存在唯一${θ_0}∈[{-\frac{π}{2},\frac{π}{2}}]$,使得f(x1)=g(θ0)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知等比数列a1+a4=18,a2a3=32,则公比q的值为(  )
A.2B.$\frac{1}{2}$C.$\frac{1}{2}$或2D.1或2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=$\frac{x^2}{2}$-alnx.
(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求函数y=f(x)的单调区间和极值;
(Ⅲ)若函数f(x)在区间(1,e2]内恰有两个零点,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.椭圆$\frac{x^2}{12}+\frac{y^2}{3}=1$的左、右焦点分别为F1、F2,点P在椭圆上,且点P的横坐标为3,则|PF1|是|PF2|的(  )
A.7倍B.5倍C.4倍D.3倍

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设c1,c2,…,cn是a1,a2,…,an的某一排列(a1,a2,…,an均为正数),则$\frac{{a}_{1}}{{c}_{1}}$+$\frac{{a}_{2}}{{c}_{2}}$+…+$\frac{{a}_{n}}{{c}_{n}}$的最小值是(  )
A.2nB.$\frac{1}{n}$C.$\sqrt{n}$D.n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.奇台一中高一年级数学老师这学期分别用A、B两种不同的教学方式试验甲、乙两个班(人数均为60人,入学时数学平均分数和优秀率都相同,勤奋程度和自觉性都一样).现随机收取甲、乙两班各20名学生的数学期末考试成绩,得到茎叶图:

学校规定:成绩不低于85分的为优秀.
请填写下面的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”
甲班乙班合计
优秀
不优秀
合计
下面临界值表仅供参考:

P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设锐角△ABC的内角A,B,C的对边分别为a,b,c,$\sqrt{3}a=2bsinA$.
(1)求B的大小;            
(2)若△ABC的面积等于$\sqrt{3}$,c=2,求a和b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.斜率为2的直线的倾斜角α所在的范围是(  )
A.0°<α<45°B.45°<α<90°C.90°<α<135°D.135°<α<180°

查看答案和解析>>

同步练习册答案