分析 (1)利用正弦定理化简可得B的大小;
(2)利用△ABC的面积等于$\sqrt{3}$,即S=$\frac{1}{2}$acsinB=$\sqrt{3}$,可得a,再根据余弦定理,求解b.
解答 解:(1)∵$\sqrt{3}a=2bsinA$.
由正弦定理,可得:$\sqrt{3}$sinA=2sinBsinA,
∵0<A<$\frac{π}{2}$,sinA≠0.
∴$\sqrt{3}$=2sinB.
∵0<B<$\frac{π}{2}$,
∴B=$\frac{π}{3}$.
(2)△ABC的面积等于$\sqrt{3}$,即S=$\frac{1}{2}$acsinB=$\sqrt{3}$,
∵c=2,B=$\frac{π}{3}$.
∴a=2.
由余弦定理,cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$,
可得:4=8-c2.
∴c=2.
点评 本题考查了正余弦定理的应运和计算能力.属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2,0)∪(2,+∞) | B. | (-2,0)∪(0,2) | C. | (-2,0) | D. | (-∞,-2)∪(0,2) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com