精英家教网 > 高中数学 > 题目详情

【题目】我校名教师参加我县六城同创干部职工进网络,服务群众进社区活动,他们的年龄均在25岁至50岁之间,按年龄分组:第一组,第二组,第三组,第四组,第五组,得到的频率分布直方图如图所示:

上表是年龄的频数分布表.

(1)求正整数的值;

(2)根据频率分布直方图估计我校这名教师年龄的中位数和平均数;

(3)从第一、二组用分层抽样的方法抽取4人,现在从这4人中任取两人接受咸丰电视台的采访,求从这4人中选取的两人年龄均在第二组的概率.

【答案】12中位数为:36.25;平均数:36.53

【解析】

试题分析:(1)根据 ,故频数比等于高之比,由此可得的值,进而求得

(2)设中位数为,则,可得,由此即可求出结果;(3)由题意:在第一组抽取1人记为,在第二组抽取3人记为,从这4人中任意抽取2人共有:六种结果;其中2人均在第二组的有:三种结果,由古典概型即可求出结果.

试题解析:(1)

(2)设中位数为,则

即中位数为:36.25

平均数:

(3)由题意:在第一组抽取1人记为,在第二组抽取3人记为

从这4人中任意抽取2人共有:六种结果

其中2人均在第二组的有:三种结果

其概率为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知直线的参数方程式是参数.以坐标原点为极点,轴的正半轴为极轴,且取相同的长度单位建立极坐标系,圆的极坐标方程为

1求直线的普通方程与圆的直角坐标方程;

2设圆与直线交于两点,若点的直角坐标为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)若函数图象在点处的切线方程为,求的值;

)求函数的极值;

)若,且对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线,0为坐标原点.

(1)当为何值时,曲线表示圆;

(2)若曲线与直线交于两点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加高一年级期末考试的学生中抽出60名学生,将其成绩(均为整数)分成六段 后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:

(1)求第四小组的频率,并补全这个频率分布直方图;

(2)估计这次考试的及格率(60分及以上为及格)和平均分;

(3)从成绩是70分以上(包括70分)的学生中选两人,求他们在同一分数段的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数数列满足).

(1)求数列的通项公式

(2)设,若恒成立求实数的取值范围

(3)是否存在以为首项公比为)的数列使得数列的每一项都是数列的不同的项若存在求出所有满足条件的数列的通项公式若不存在请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了促进学生的全面发展,郑州市某中学重视学生社团文化建设,现用分层抽样的方法从“话剧社”,“创客社”、“演讲社”三个金牌社团中抽6人组成社团管理小组,有关数据见下表(单位:人):

社团名称

成员人数

抽取人数

话剧社

50

a

创客社

150

b

演讲社

100

c

(1)求的值;

(2)若从“话剧社”,“创客社”,“演讲社”已抽取的6人中任意抽取2人担任管理小组组长,求这2人来自不同社团的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线)与椭圆相交所得的弦长为

)求抛物线的标准方程;

)设上异于原点的两个不同点,直线的倾斜角分别为,当变化且为定值)时,证明:直线恒过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,过椭圆上一点轴作垂线,垂足为左焦点分别为的右顶点,上顶点,且.

1)求椭圆的方程;

2上的两点,若四边形逆时针排列)的对角线所在直线的斜率为,求四边形面积的最大值.

查看答案和解析>>

同步练习册答案