【题目】我校名教师参加我县“六城”同创“干部职工进网络,服务群众进社区”活动,他们的年龄均在25岁至50岁之间,按年龄分组:第一组,第二组,第三组,第四组,第五组,得到的频率分布直方图如图所示:
上表是年龄的频数分布表.
(1)求正整数的值;
(2)根据频率分布直方图估计我校这名教师年龄的中位数和平均数;
(3)从第一、二组用分层抽样的方法抽取4人,现在从这4人中任取两人接受咸丰电视台的采访,求从这4人中选取的两人年龄均在第二组的概率.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知直线的参数方程式(是参数).以坐标原点为极点,轴的正半轴为极轴,且取相同的长度单位建立极坐标系,圆的极坐标方程为.
(1)求直线的普通方程与圆的直角坐标方程;
(2)设圆与直线交于、两点,若点的直角坐标为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校从参加高一年级期末考试的学生中抽出60名学生,将其成绩(均为整数)分成六段, …后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:
(1)求第四小组的频率,并补全这个频率分布直方图;
(2)估计这次考试的及格率(60分及以上为及格)和平均分;
(3)从成绩是70分以上(包括70分)的学生中选两人,求他们在同一分数段的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数,数列满足,(,).
(1)求数列的通项公式;
(2)设,若对恒成立,求实数的取值范围;
(3)是否存在以为首项,公比为(,)的数列,使得数列的每一项都是数列的不同的项,若存在,求出所有满足条件的数列的通项公式;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了促进学生的全面发展,郑州市某中学重视学生社团文化建设,现用分层抽样的方法从“话剧社”,“创客社”、“演讲社”三个金牌社团中抽6人组成社团管理小组,有关数据见下表(单位:人):
社团名称 | 成员人数 | 抽取人数 |
话剧社 | 50 | a |
创客社 | 150 | b |
演讲社 | 100 | c |
(1)求的值;
(2)若从“话剧社”,“创客社”,“演讲社”已抽取的6人中任意抽取2人担任管理小组组长,求这2人来自不同社团的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线:()与椭圆:相交所得的弦长为
(Ⅰ)求抛物线的标准方程;
(Ⅱ)设,是上异于原点的两个不同点,直线和的倾斜角分别为和,当,变化且为定值()时,证明:直线恒过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,过椭圆上一点向轴作垂线,垂足为左焦点,分别为的右顶点,上顶点,且,.
(1)求椭圆的方程;
(2)为上的两点,若四边形逆时针排列)的对角线所在直线的斜率为,求四边形面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com