精英家教网 > 高中数学 > 题目详情

已知以点为圆心的圆与直线相切,过点的动直线与圆相交于两点.
(1)求圆的方程;
(2)当时,求直线的方程.

(1);(2).

解析试题分析:(1)由直线与以为圆心的圆相切得到该圆的半径,然后根据圆心的坐标与半径即可写出圆的标准方程;(2)先由弦的长与圆的半径得到圆心到直线的距离,进而设出直线的方程(注意检验直线斜率不存在的情况),由点到直线的距离公式即可算出的取值,从而可写出直线的方程.
试题解析:(1)由题意知到直线的距离为圆半径

的方程为
(2)设线段的中点为,连结,则由垂径定理可知,且,在中由勾股定理易知
当动直线的斜率不存在时,直线的方程为时,显然满足题意;
当动直线的斜率存在时,设动直线的方程为:
到动直线的距离为1得
为所求方程.
考点:1.圆的标准方程;2.点到直线的距离公式;3.直线与圆的位置关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知一个圆经过直线l:与圆C:的两个交点,并且面积有最小值,求此圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点,动点P 满足:|PA|=2|PB|.
(1)若点P的轨迹为曲线,求此曲线的方程;
(2)若点Q在直线l1: x+y+3=0上,直线l2经过点Q且与曲线只有一个公共点M,求|QM|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线的方程为:为常数).
(1)判断曲线的形状;
(2)设曲线分别与轴、轴交于点不同于原点),试判断的面积是否为定值?并证明你的判断;
(3)设直线与曲线交于不同的两点,且,求曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆C:,直线L:.
(1)求证:对直线L与圆C总有两个不同交点;
(2)设L与圆C交于不同两点A、B,求弦AB的中点M的轨迹方程;
(3)若定点P(1,1)分弦AB所得向量满足,求此时直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆的方程:
(1)求m的取值范围;
(2)若圆C与直线相交于,两点,且,求的值
(3)若(1)中的圆与直线x+2y-4=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m的值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆C:(x-3)2+(y-4)2=4,直线l1过定点A(1,0).
(1)若l1与圆相切,求l1的方程;
(2)若l1与圆相交于P、Q两点,线段PQ的中点为M,又l1与l2:x+2y+2=0的交点为N,判断AM·AN是否为定值?若是,则求出定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆:,过定点作斜率为1的直线交圆两点,为线段的中点.
(1)求的值;
(2)设为圆上异于的一点,求△面积的最大值;
(3)从圆外一点向圆引一条切线,切点为,且有 , 求的最小值,并求取最小值时点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)求圆心在轴上,且与直线相切于点的圆的方程;
(2)已知圆过点,且与圆关于直线对称,求圆的方程.

查看答案和解析>>

同步练习册答案