精英家教网 > 高中数学 > 题目详情

已知圆C:,直线L:.
(1)求证:对直线L与圆C总有两个不同交点;
(2)设L与圆C交于不同两点A、B,求弦AB的中点M的轨迹方程;
(3)若定点P(1,1)分弦AB所得向量满足,求此时直线L的方程.

(1)详见解析;(2);(3)直线方程为.

解析试题分析:(1)由直线L的方程可知,直线L恒过定点(1,1),而这个点在圆内,所以直线L与圆C总有两个不同的交点;(2)设M(x,y).当M不与P重合时,连接CM、CP,由于P是AB的中点,所以CMMP,用勾股定理便可得所求方程(或用向量的数量积等于0也可).(3)设A(),B()由可得.将直线与圆的方程联立得.由韦达定理得,再将此与联立得,代入方程,从而得直线的方程.
试题解析:(1)直线恒过定点(1,1),且这个点在圆内,故直线L与圆C总有两个不同的交点.
(2)当M不与P重合时,连接CM、CP,则CMMP,设M(x,y)

化简得:
当M与P重合时,满足上式.
(3)设A(),B()由.
将直线与圆的方程联立得:       ..(*)

可得,代入(*)得
直线方程为.
考点:直线与圆.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知圆M: ,直线,上一点A的横坐标为,过点A作圆M的两条切线,,切点分别为B,C.

(1)当时,求直线,的方程;
(2)当直线,互相垂直时,求的值;
(3)是否存在点A,使得?若存在,求出点A的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,△ABO三边上的点C、D、E都在⊙O上,已知AB∥DE,AC=CB.

(1)求证:直线AB是⊙O的切线;
(2)若AD=2,且tan∠ACD=,求⊙O的半径r的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,为圆的直径,为垂直的一条弦,垂足为,弦.
(1)求证:四点共圆;
(2)若,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

直线kxy+6=0被圆x2y2=25截得的弦长为8,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知以点为圆心的圆与直线相切,过点的动直线与圆相交于两点.
(1)求圆的方程;
(2)当时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,二次函数f(x)=x2+2x+b(x∈R)与两坐标轴有三个交点.记过三个交点的圆为圆C.
(1)求实数b的取值范围;
(2)求圆C的方程;
(3)圆C是否经过定点(与b的取值无关)?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知点A(-1,0)与点B(1,0),C是圆x2+y2=1上的动点,连结BC并延长至D,使得CD=BC,求AC与OD的交点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知以点C (t∈R,t≠0)为圆心的圆与x轴交于点OA,与y轴交于点OB,其中O为原点.
(1)求证:△AOB的面积为定值;
(2)设直线2xy-4=0与圆C交于点MN,若|OM|=|ON|,求圆C的方程;
(3)在(2)的条件下,设PQ分别是直线lxy+2=0和圆C上的动点,求|PB|+|PQ|的最小值及此时点P的坐标..

查看答案和解析>>

同步练习册答案