如图,已知点A(-1,0)与点B(1,0),C是圆x2+y2=1上的动点,连结BC并延长至D,使得CD=BC,求AC与OD的交点P的轨迹方程.
科目:高中数学 来源: 题型:解答题
已知圆C经过点A(-2,0),B(0,2),且圆心C在直线y=x上,又直线l:y=kx+1与圆C相交于P、Q两点.
(1)求圆C的方程;
(2)过点(0,1)作直线l1与l垂直,且直线l1与圆C交于M、N两点,求四边形PMQN面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆C:,直线L:.
(1)求证:对直线L与圆C总有两个不同交点;
(2)设L与圆C交于不同两点A、B,求弦AB的中点M的轨迹方程;
(3)若定点P(1,1)分弦AB所得向量满足,求此时直线L的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆C:(x-3)2+(y-4)2=4,直线l1过定点A(1,0).
(1)若l1与圆相切,求l1的方程;
(2)若l1与圆相交于P、Q两点,线段PQ的中点为M,又l1与l2:x+2y+2=0的交点为N,判断AM·AN是否为定值?若是,则求出定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆:,过定点作斜率为1的直线交圆于、两点,为线段的中点.
(1)求的值;
(2)设为圆上异于、的一点,求△面积的最大值;
(3)从圆外一点向圆引一条切线,切点为,且有 , 求的最小值,并求取最小值时点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系xOy中,曲线y=x2-2x-3与坐标轴的交点都在圆C上.
(1)求圆C的方程;
(2)若直线x+y+a=0与圆C交于A,B两点,且AB=2,求实数a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆C1:x2+y2-2y=0,圆C2:x2+(y+1)2=4的圆心分别为C1,C2,P为一个动点,且直线PC1,PC2的斜率之积为-.
(1)求动点P的轨迹M的方程;
(2)是否存在过点A(2,0)的直线l与轨迹M交于不同的两点C,D,使得|C1C|=|C1D|?若存在,求直线l的方程;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com