已知圆的圆心在直线上,且与轴交于两点,.
(1)求圆的方程;
(2)求过点的圆的切线方程.
(1);(2).
解析试题分析:(1)先联立直线的中垂线方程与直线方程,求出交点的坐标即圆心的坐标,然后再计算出,最后就可写出圆的标准方程;(2)求过点的圆的切线方程问题,先判断点在圆上还是在圆外,若点在圆上,则所求直线的斜率为,由点斜式即可写出切线的方程,若点在圆外,则可设切线方程为(此时注意验证斜率不存在的情形),然后由圆心到切线的距离等于半径,求出即可求出切线的方程.
试题解析:(1)因为圆与轴交于两点,,所以圆心在直线上
由得即圆心的坐标为 2分
半径
所以圆的方程为 4分
(2)由坐标可知点在圆上,由,可知切线的斜率为 6分
故过点的圆的切线方程为 8分.
考点:1.圆的方程;2.直线与圆的位置关系.
科目:高中数学 来源: 题型:解答题
如图,已知点A(-1,0)与点B(1,0),C是圆x2+y2=1上的动点,连结BC并延长至D,使得CD=BC,求AC与OD的交点P的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知以点C (t∈R,t≠0)为圆心的圆与x轴交于点O,A,与y轴交于点O,B,其中O为原点.
(1)求证:△AOB的面积为定值;
(2)设直线2x+y-4=0与圆C交于点M,N,若|OM|=|ON|,求圆C的方程;
(3)在(2)的条件下,设P,Q分别是直线l:x+y+2=0和圆C上的动点,求|PB|+|PQ|的最小值及此时点P的坐标..
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆心为C的圆,满足下列条件:圆心C位于x轴正半轴上,与直线3x-4y+7=0相切,且被轴截得的弦长为,圆C的面积小于13.
(Ⅰ)求圆C的标准方程;
(Ⅱ)设过点M(0,3)的直线l与圆C交于不同的两点A,B,以OA,OB为邻边作平行四边形OADB.是否存在这样的直线l,使得直线OD与MC恰好平行?如果存在,求出l的方程;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆C:,其中为实常数.
(1)若直线l:被圆C截得的弦长为2,求的值;
(2)设点,0为坐标原点,若圆C上存在点M,使|MA|="2" |MO|,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知动点M到定点与到定点的距离之比为3.
(Ⅰ)求动点M的轨迹C的方程,并指明曲线C的轨迹;
(Ⅱ)设直线,若曲线C上恰有两个点到直线的距离为1,
求实数的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com