精英家教网 > 高中数学 > 题目详情

已知圆C:(x-3)2+(y-4)2=4,直线l1过定点A(1,0).
(1)若l1与圆相切,求l1的方程;
(2)若l1与圆相交于P、Q两点,线段PQ的中点为M,又l1与l2:x+2y+2=0的交点为N,判断AM·AN是否为定值?若是,则求出定值;若不是,请说明理由.

(1)x=1或3x-4y-3=0(2)6

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知圆
(1)将圆的方程化为标准方程,并指出圆心坐标和半径;
(2)求直线被圆所截得的弦长。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,为圆的直径,为垂直的一条弦,垂足为,弦.
(1)求证:四点共圆;
(2)若,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知以点为圆心的圆与直线相切,过点的动直线与圆相交于两点.
(1)求圆的方程;
(2)当时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,二次函数f(x)=x2+2x+b(x∈R)与两坐标轴有三个交点.记过三个交点的圆为圆C.
(1)求实数b的取值范围;
(2)求圆C的方程;
(3)圆C是否经过定点(与b的取值无关)?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一个圆.
(1)求实数m的取值范围;
(2)求该圆半径r的取值范围;
(3)求圆心的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知点A(-1,0)与点B(1,0),C是圆x2+y2=1上的动点,连结BC并延长至D,使得CD=BC,求AC与OD的交点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,已知曲线C由圆弧C1和圆弧C2相接而成,两相接点M,N均在直线x=5上.圆弧C1的圆心是坐标原点O,半径为13;圆弧C2过点A(29,0).

(1)求圆弧C2的方程.
(2)曲线C上是否存在点P,满足PA=PO?若存在,指出有几个这样的点;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆经过坐标原点和点,且圆心在轴上.
(1)求圆的方程;
(2)设直线经过点,且与圆相交所得弦长为,求直线的方程.

查看答案和解析>>

同步练习册答案