已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一个圆.
(1)求实数m的取值范围;
(2)求该圆半径r的取值范围;
(3)求圆心的轨迹方程.
科目:高中数学 来源: 题型:解答题
如图所示,⊙O内切△ABC的边于D、E、F,AB=AC,连接AD交⊙O于点H,直线HF交BC的延长线于点G.求证:![]()
(1)圆心O在直线AD上;
(2)点C是线段GD的中点.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知曲线
的方程为:
(
,
为常数).
(1)判断曲线
的形状;
(2)设曲线
分别与
轴、
轴交于点
、
(
、
不同于原点
),试判断
的面积
是否为定值?并证明你的判断;
(3)设直线
与曲线
交于不同的两点
、
,且
,求曲线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆
的方程:![]()
(1)求m的取值范围;
(2)若圆C与直线
相交于
,
两点,且
,求
的值
(3)若(1)中的圆与直线x+2y-4=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m的值;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆C:(x-3)2+(y-4)2=4,直线l1过定点A(1,0).
(1)若l1与圆相切,求l1的方程;
(2)若l1与圆相交于P、Q两点,线段PQ的中点为M,又l1与l2:x+2y+2=0的交点为N,判断AM·AN是否为定值?若是,则求出定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,圆O1与圆O2的半径都是1,O1O2=4,过动点P分别作圆O1、圆O2的切线PM、PN(M、N分别为切点),使得PM=
PN,试建立适当的坐标系,并求动点P的轨迹方程.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆
:![]()
,过定点
作斜率为1的直线交圆
于
、
两点,
为线段
的中点.
(1)求
的值;
(2)设
为圆
上异于
、
的一点,求△
面积的最大值;
(3)从圆外一点
向圆
引一条切线,切点为
,且有
, 求
的最小值,并求
取最小值时点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上.
(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;
(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com