精英家教网 > 高中数学 > 题目详情
精英家教网如图,正方形ABCD所在平面与三角形CDE所在平面相交于CD,AE⊥平面CDE,且AE=3,AB=6.
(1)求证:AB⊥平面ADE;
(2)求凸多面体ABCDE的体积.
分析:(1)根据AE⊥平面CDE的性质可知AE⊥CD,而CD⊥AD,AD∩AE=A,根据线面垂直的判定定理可知CD⊥平面ADE,而AB∥CD,,从而AB⊥平面ADE;
(2)在Rt△ADE中,求出AE,AD,DE,过点E作EF⊥AD于点F,根据AB⊥平面ADE,EF?平面ADE,可知EF⊥AB,而AD∩AB=A,从而EF⊥平面ABCD,因AD•EF=AE•DE,可求出EF,又正方形ABCD的面积SABCD=36,则VABCDE=VE-ABCD=
1
3
SABCD•EF
=
1
3
×36×
3
3
2
=18
3
,得到结论.
解答:精英家教网(1)证明:∵AE⊥平面CDE,CD?平面CDE,
∴AE⊥CD.
在正方形ABCD中,CD⊥AD,
∵AD∩AE=A,∴CD⊥平面ADE.
∵AB∥CD,
∴AB⊥平面ADE.
(2)解:在Rt△ADE中,AE=3,AD=6,
DE=
AD2-AE2
=3
3

过点E作EF⊥AD于点F,
∵AB⊥平面ADE,EF?平面ADE,
∴EF⊥AB.
∵AD∩AB=A,
∴EF⊥平面ABCD.
∵AD•EF=AE•DE,
EF=
AE•DE
AD
=
3×3
3
6
=
3
3
2

又正方形ABCD的面积SABCD=36,
VABCDE=VE-ABCD=
1
3
SABCD•EF
=
1
3
×36×
3
3
2
=18
3

故所求凸多面体ABCDE的体积为18
3
点评:本小题主要考查空间线面关系、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,正方形ABCD和四边形ACEF所在的平面互相垂直,CE⊥AC,EF∥AC,AB=
2
,CE=EF=1.
(Ⅰ)求证:AF∥平面BDE;
(Ⅱ)求证:CF⊥平面BDE;
(Ⅲ)求二面角A-BE-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

8、如图把正方形ABCD沿对角线BD折成直二面角,对于下面结论:
①AC⊥BD;
②CD⊥平面ABC;
③AB与BC成60°角;
④AB与平面BCD成45°角.
则其中正确的结论的序号为
①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直,点M在AC上移动,点N在BF上移动,若CM=BN=a(0<a<
2
),则MN的长的最小值为 (  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方形ABCD所在平面与等腰三角形EAD所在平面相交于AD,AE⊥平面CDE.
(I)求证:AB⊥平面ADE;
(II)(理)在线段BE上存在点M,使得直线AM与平面EAD所成角的正弦值为
6
3
,试确定点M的位置.
(文)若AD=2,求四棱锥E-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•温州二模)如图,正方形ABCD与正方形CDEF所成的二面角为60°,则直线EC与直线AD所成的角的余弦值为
2
4
2
4

查看答案和解析>>

同步练习册答案