12£®ÒÑÖªÇúÏßC1µÄ·½³ÌΪx2+y2=1£¬¹ýÆ½ÃæÉÏÒ»µãP1×÷C1µÄÁ½ÌõÇÐÏߣ¬Çеã·Ö±ðΪA1£¬B1£¬ÇÒÂú×ã¡ÏA1P1B1=$\frac{¦Ð}{3}$£¬¼ÇP1µÄ¹ì¼£ÎªC2£¬¹ýÒ»µãP2×÷C2µÄÁ½ÌõÇÐÏߣ¬Çеã·Ö±ðΪA2£¬B2Âú×ã¡ÏA2P2B2=$\frac{¦Ð}{3}$£¬¼ÇP2µÄ¹ì¼£ÎªC3£¬°´ÉÏÊö¹æÂÉÒ»Ö±½øÐÐÏÂÈ¥¡­£¬¼Çan=|AnAn+1|maxÇÒSnΪÊýÁÐ{$\frac{1}{{a}_{n}}$}µÄǰnÏîºÍ£¬ÔòÂú×ã|Sn-$\frac{2}{3}$|£¼$\frac{1}{100}$µÄ×îСµÄnÊÇ7£®

·ÖÎö ÉèP1£¨x£¬y£©£¬Ôò|OP1|=2|OA1|=2£¬¿ÉµÃ·½³ÌC2£ºx2+y2=4£®Í¬Àí¿ÉµÃP2µÄ·½³ÌC3Ϊ£ºx2+y2=16£®ÉèA1£¨cos¦È£¬sin¦È£©£¬A2£¨2cos¦Á£¬2sin¦Á£©£¬¿ÉµÃ|A1A2|=$\sqrt{5-4cos£¨¦Á-¦È£©}$¡Ü3=1+2£¬Í¬Àí¿ÉµÃ£ºan=|AnAn+1|max=2n-1+2n£®¿ÉµÃ$\frac{1}{{a}_{n}}$=$\frac{1}{3•{2}^{n-1}}$£®¿ÉµÃÊýÁÐ{$\frac{1}{{a}_{n}}$}µÄǰnÏîºÍSn£¬´úÈë|Sn-$\frac{2}{3}$|=$\frac{1}{{3•2}^{n-1}}$£¼$\frac{1}{100}$£¬½âµÃn£®

½â´ð ½â£ºÉèP1£¨x£¬y£©£¬Ôò|OP1|=2|OA1|=2£¬
¿ÉµÃ·½³ÌC2£ºx2+y2=4£®
ͬÀí¿ÉµÃP2µÄ·½³ÌC3Ϊ£ºx2+y2=16£®
ÉèA1£¨cos¦È£¬sin¦È£©£¬A2£¨2cos¦Á£¬2sin¦Á£©
|A1A2|=$\sqrt{£¨cos¦È-2cos¦Á£©^{2}+£¨sin¦È-2sin¦Á£©^{2}}$=$\sqrt{5-4cos£¨¦Á-¦È£©}$¡Ü3=1+2£¬
ͬÀí¿ÉµÃ£ºan=|AnAn+1|max=2n-1+2n£®
$\frac{1}{{a}_{n}}$=$\frac{1}{{2}^{n-1}+{2}^{n}}$=$\frac{1}{3•{2}^{n-1}}$£®
ÊýÁÐ{$\frac{1}{{a}_{n}}$}µÄǰnÏîºÍSn=$\frac{1}{3}$¡Á$\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$=$\frac{2}{3}£¨1-\frac{1}{{2}^{n}}£©$£¬
ÔòÂú×ã|Sn-$\frac{2}{3}$|=$\frac{1}{{3•2}^{n-1}}$£¼$\frac{1}{100}$£¬½âµÃn¡Ý7£®
¹Ê´ð°¸Îª£º7£®

µãÆÀ ±¾Ì⿼²éÁ˵ȱÈÊýÁеÄͨÏʽÓëÇóºÍ¹«Ê½¡¢ÊýÐνáºÏ·½·¨¡¢ÊýÁеÝÍÆ¹ØÏµ¡¢Á½µãÖ®¼äµÄ¾àÀ빫ʽ¡¢Ö±ÏßÓëÔ²ÏàÇеÄÐÔÖÊ¡¢¹´¹É¶¨Àí£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªº¯Êýf£¨x£©=lnx+$\frac{a}{x}$£®
£¨1£©µ±a£¼0ʱ£¬Ö¤Ã÷º¯Êýf£¨x£©ÔÚ£¨0£¬+¡Þ£©Êǵ¥µ÷º¯Êý£»
£¨2£©µ±a£¼eʱ£¬º¯Êýf£¨x£©ÔÚÇø¼ä[1£¬e]ÉϵÄ×îСֵÊÇ$\frac{4}{3}$£¬ÇóaµÄÖµ£»
£¨3£©Éèg£¨x£©=f£¨x£©-$\frac{a}{x}$£¬A£¬BÊǺ¯Êýg£¨x£©Í¼ÏóÉÏÈÎÒⲻͬµÄÁ½µã£¬¼ÇÏß¶ÎABµÄÖеãµÄºá×ø±êÊÇx0£¬Ö¤Ã÷Ö±ÏßABµÄбÂÊk£¾g'£¨x0£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Ä³¶àÃæÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¶àÃæÌåµÄÍâ½ÓÇòµÄ±íÃæ»ýΪ41¦Ðcm2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªº¯Êýf£¨x£©=x£¬g£¨x£©=lnx
£¨1£©Èôº¯ÊýF£¨x£©=g£¨x£©+af£¨x£©ÓÐÁ½¸öÁãµãʱ£¬ÊµÊýaµÄȡֵ·¶Î§ÎªA£¬·½³Ì$g£¨x£©-{[{1-f£¨x£©}]^2}+£¨1-f£¨x£©£©=\frac{b}{x}$ÓÐʵ¸ùʱ£¬ÊµÊýbµÄȡֵ¼¯ºÏΪB£¬ÇóA¡ÉB£®
£¨2£©Èôº¯ÊýG£¨x£©=af£¨x£©2-£¨a+2£©f£¨x£©+g£¨x£©£¬ÆäÖÐa¡ÊR£®£¬µ±a£¾0ʱ£¬Èôf£¨x£©ÔÚÇø¼ä[1£¬e]ÉϵÄ×îСֵΪ-2£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨3£©ÒÑÖª?x1£¬x2¡Ê£¨0£¬+¡Þ£©£¬ÇÒx1£¼x2£¬ÈôG£¨x1£©+2x1£¼G£¨x2£©+2x2ºã³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®
£¨4£©º¯Êý$h£¨x£©=\frac{g£¨x£©}{f£¨x£©}-m£¬£¨m¡ÊR£©$£¬Èôh£¨x£©µÄÁ½¸öÁãµã·Ö±ðΪx1¡¢x2£¬ÇóÖ¤${x_1}{x_2}£¾{e^2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªÔ²OµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2cos¦È\\ y=2sin¦È\end{array}$£¨¦ÈΪ²ÎÊý£¬0¡Ü¦È£¼2¦Ð£©£®
£¨1£©ÇóÔ²ÐĺͰ뾶£»
£¨2£©ÈôÔ²OÉϵãM¶ÔÓ¦µÄ²ÎÊý¦È=$\frac{5¦Ð}{3}$£¬ÇóµãMµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®Óмס¢ÒÒ¶þÈËÈ¥¿´Íû¸ßÖÐÊýѧÕÅÀÏʦ£¬ÆÚ¼äËûÃÇ×öÁËÒ»¸öÓÎÏ·£¬ÕÅÀÏʦµÄÉúÈÕÊÇmÔÂnÈÕ£¬ÕÅÀÏʦ°Ñm¸æËßÁ˼ף¬°Ñn¸æËßÁËÒÒ£¬È»ºóÕÅÀÏʦÁгöÀ´ÈçÏÂ10¸öÈÕÆÚ¹©Ñ¡Ôñ£º2ÔÂ5ÈÕ£¬2ÔÂ7ÈÕ£¬2ÔÂ9ÈÕ£¬5ÔÂ5ÈÕ£¬5ÔÂ8ÈÕ£¬8ÔÂ4ÈÕ£¬8ÔÂ7ÈÕ£¬9ÔÂ4ÈÕ£¬9ÔÂ6ÈÕ£¬9ÔÂ9ÈÕ£®¿´ÍêÈÕÆÚºó£¬¼×˵¡°ÎÒ²»ÖªµÀ£¬µ«ÄãÒ»¶¨Ò²²»ÖªµÀ¡±£¬ÒÒÌáÌýÁ˼׵ϰºó£¬Ëµ¡°±¾À´ÎÒ²»ÖªµÀ£¬µ«ÏÖÔÚÎÒÖªµÀÁË¡±£¬¼×½Ó×Å˵£¬¡°Å¶£¬ÏÖÔÚÎÒÒ²ÖªµÀÁË¡±£®ÇëÎÊÕÅÀÏʦµÄÉúÈÕÊÇ8ÔÂ4ÈÕ£®£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÀÏʦ´ø¼×ÒÒ±û¶¡ËÄÃûѧÉúÈ¥²Î¼Ó×ÔÖ÷ÕÐÉú¿¼ÊÔ£¬¿¼ÊÔ½áÊøºóÀÏʦÏòËÄÃûѧÉúÁ˽⿼ÊÔÇé¿ö£¬ËÄÃûѧÉúµÄ»Ø´ðÈçÏ£º
¼×˵£º¡°ÎÒÃÇËÄÈ˶¼Ã»¿¼ºÃ¡±£»
ÒÒ˵£º¡°ÎÒÃÇËÄÈËÖÐÓÐÈË¿¼µÃºÃ¡±£»
±û˵£º¡°ÒҺͶ¡ÖÁÉÙÓÐÒ»ÈËû¿¼ºÃ¡±£»
¶¡Ëµ£º¡°ÎÒû¿¼ºÃ¡±£®
³É¼¨³öÀ´ºó·¢ÏÖ£¬ËÄÃûѧÉúÖÐÓÐÇÒÖ»ÓÐÁ½ÈË˵¶ÔÁË£¬ËûÃÇÊÇ£¨¡¡¡¡£©
A£®¼×¡¢±ûB£®ÒÒ¡¢¶¡C£®±û¡¢¶¡D£®ÒÒ¡¢±û

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Èçͼ£¬Ò»¸ö¿Õ¼ä¼¸ºÎÌåµÄÈýÊÓͼÖУ¬ÕýÊÓͼºÍ²àÊÓͼ¶¼ÊÇÑü³¤Îª5£¬µ×±ß³¤Îª8µÄµÈÑüÈý½ÇÐΣ¬¸©ÊÓͼΪ±ß³¤Îª8µÄÕý·½ÐΣ¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýΪ£¨¡¡¡¡£©
A£®192B£®32C£®320D£®64

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖªº¯Êý$f£¨x£©={log_3}£¨\frac{1}{x}+a£©£¨a£¾0£©$£¬¶ÔÈÎÒâµÄ$t¡Ê[\frac{1}{4}£¬1]$£¬º¯Êýf£¨x£©ÔÚÇø¼ä[t£¬t+1]ÉϵÄ×î´óÖµÓë×îСֵµÄ²î²»³¬¹ý1£¬ÔòaµÄȡֵ·¶Î§Îª[$\frac{4}{5}$£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸