精英家教网 > 高中数学 > 题目详情
15.已知函数y=f(x)(x∈R)的图象如图所示,f′(x)是f(x)的导函数,则不等式(x-1)f′(x)<0的解集为(-∞,$\frac{1}{2}$)∪(1,2).

分析 通过讨论x的符号,根据函数单调性和导数之间的关系即可得到结论.

解答 解:若x-1=0即x=1时,不等式(x-1)•f′(x)<0不成立.
若x-1>0即x>1时,则不等式(x-1)•f′(x)<0等价为f′(x)<0,
此时函数单调递减,由图象可知,此时1<x<2.
若x-1<0即x<1时,则不等式(x-1)•f′(x)<0等价为f′(x)>0,
此时函数单调递增,由图象可知,此时x<$\frac{1}{2}$.,
故不等式x•f′(x)<0的解集为(-∞,$\frac{1}{2}$)∪(1,2).
故答案为:(-∞,$\frac{1}{2}$)∪(1,2).

点评 本题主要考查不等式的解法,利用函数单调性和导数之间的关系即可得到结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x3-2x2+x+3,
(1)$x∈[{\frac{2}{3},1}]$时求值域.
(2)若F(x)=f(x)+m有三个零点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x3-3ax+b(a≠0).
(1)若曲线y=f(x)在点(2,f(x))处与直线y=8相切,求a,b的值;
(2)求函数f(x)的单调区间与极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知A、B是过抛物线y2=2px(p>0)焦点F的直线与抛物线的交点,O是坐标原点,且满足AB=3FB,S△OAB=$\frac{{\sqrt{2}}}{3}$AB,则AB的值为$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.集合A={x|x(2-x)>0},B={x|x-1≥0},则集合A∪B=(  )
A.{x|1≤x<2}B.{x|x>2}C.{x|x≥1或x<0}D.{x|x>0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知a+b>0,比较$\frac{a}{{b}^{2}}$+$\frac{b}{{a}^{2}}$与$\frac{1}{a}$+$\frac{1}{b}$的大小.并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.有3名男生,4名女生,在下列不同要求下,求不同的排列方法种数:
(1)选其中5人排成一排
(2)全体排成一排,甲不站在排头也不站在排尾
(3)全体排成一排,男生互不相邻
(4)全体排成一排,甲、乙两人中间恰好有3人.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)的图象如图所示,设f'(x)是f(x)的导函数,若0<a<b,下列各式成立的是(  )
A.$f'({\frac{2ab}{a+b}})<f'({\frac{a+b}{2}})<f'({\sqrt{ab}})$B.$f'({\frac{2ab}{a+b}})<f'({\sqrt{ab}})<f'({\frac{a+b}{2}})$
C.$f'({\frac{a+b}{2}})<f'({\frac{2ab}{a+b}})<f'({\sqrt{ab}})$D.$f'({\frac{a+b}{2}})<f'({\sqrt{ab}})<f'({\frac{2ab}{a+b}})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.有一段演绎推理是这样的:“直线平行于平面,则此直线平行于平面内的所有直线;已知直线b∥平面α,直线a?平面α,则直线b∥直线a”.结论显然是错误的,这是因为(1).
(1)大前提错误    (2)推理形式错误     (3)小前提错误     (4)以上都错误.

查看答案和解析>>

同步练习册答案