精英家教网 > 高中数学 > 题目详情
在△ABC中,a,b,c分别为内角A,B,C的对边,△ABC的面积是30,cosA=
12
13

(1)求
AB
AC
;        
(2)若c-b=1,求a的值.
考点:平面向量数量积的运算,余弦定理
专题:平面向量及应用
分析:(1)由同角三角函数的基本关系可得sinA=
5
13
,结合面积可得bc=156,由数量积的定义可得
AB
AC
;(2)由余弦定理可得a2=b2+c2-2bccosA=(c-b)2+2bc(1-cosA),代值计算可得.
解答: 解:(1)在△ABC中,∵cosA=
12
13
,∴sinA=
1-cos2A
=
5
13

∴△ABC的面积S=
1
2
bcsinA=
5
26
bc=30,解得bc=156,
AB
AC
=bccosA=156×
12
13
=144,
(2)由余弦定理可得a2=b2+c2-2bccosA
=(c-b)2+2bc(1-cosA)
=1+2×156(1-
12
13
)=25.
∴a=5.
点评:本题考查平面向量的数量积,涉及解三角形,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|x<-1或x≥1},非空集合B={x|﹙x-a-1﹚﹙x-2a﹚<0},若B⊆A,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),其总成本为G(x)(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为2万元(总成本=固定成本+生产成本).销售收入R(x)(万元)满足R(x)=
-0.4x2+5.2x(0≤x≤5)
16(x>5)
,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:
(1)写出函数G(x)的解析式;
(2)写出利润函数y=f(x)的解析式(利润=销售收入-总成本);
(3)工厂生产多少百台产品时,可使盈利最多?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x
x2+1

(1)求f(x)的极大值和极小值,并画出函数f(x)的草图
(2)根据函数图象,如果方程f(x)-m=0(m∈R)有且仅有两个不同的实根,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-alnx(a∈R)
(1)当a=2时,求曲线y=f(x)在x=1处的切线方程.
(2)求f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在坐标原点O,焦点在x轴上,离心率为
1
2
,点P、A、B在该椭圆上,且P坐标为(2,3),线段AB的中点T在直线OP上,且A、O、B三点不共线.
(1)求椭圆方程;
(2)求直线AB的斜率;
(3)求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(π-x)-cosx(x∈R).
(1)求f(0)的值;
(2)求函数f(x)的最小正周期及最大、小值;
(3)若f(α)=
2
α∈(
π
2
,π),求sinα+cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+
a-1
x
-lnx-1,其中a>0.
(Ⅰ)当a=1时,求函数f(x)的单调区间和极值;
(Ⅱ)若f(x)≥0对任意x∈[1,+∞)恒成立,求正数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)设x,y满足约束条件
3x-y-6≤0
x-y+2≥0
x≥0,y≥0
,则
x-2y-1
y-2
的取值范围是多少?
(2)设x,y为实数,若4x2-2xy+4y2=1,求2x+y的最大值.

查看答案和解析>>

同步练习册答案