分析 已知等式左边分子分母除以cosα,利用同角三角函数间基本关系化简求出tanα的值,原式利用同角三角函数间基本关系化简后,将tanα的值代入计算即可求出值.
解答 解:∵$\frac{sinα+2cosα}{4cosα-sinα}$=$\frac{tanα+2}{4-tanα}$=2,
∴tanα=2,
则原式=$\frac{si{n}^{2}α-sinαcosα}{si{n}^{2}α+co{s}^{2}α}$=$\frac{ta{n}^{2}α-tanα}{ta{n}^{2}α+1}$=$\frac{4-2}{4+1}$=$\frac{2}{5}$,
故答案为:$\frac{2}{5}$.
点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | 锐角三角形 | B. | 钝角三角形 | C. | 直角三角形 | D. | 不确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com