精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=cosxsin(x+$\frac{π}{3}$)-$\frac{\sqrt{3}}{4}$.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)△ABC中,角A,B,C所对的边为a,b,c,f($\frac{A}{2}$)=$\frac{1}{2}$,B=$\frac{π}{4}$,a=1,求△ABC的面积.

分析 (I)利用三角函数恒等变换的应用化简函数解析式可得f(x)=$\frac{1}{2}$sin(2x+$\frac{π}{3}$),利用三角函数周期公式即可计算得解.
(II)由已知可求sin(A+$\frac{π}{3}$)=1,结合范围A+$\frac{π}{3}$∈($\frac{π}{3}$,$\frac{4π}{3}$),解得A,C的值,利用正弦定理可求b的值,根据三角形面积公式即可计算得解.

解答 解:(I)∵f(x)=cosxsin(x+$\frac{π}{3}$)-$\frac{\sqrt{3}}{4}$=$\frac{1}{4}$sin2x+$\frac{\sqrt{3}}{2}$×$\frac{1+cos2x}{2}$-$\frac{\sqrt{3}}{4}$=$\frac{1}{2}$sin(2x+$\frac{π}{3}$),
∴f(x)的最小正周期T=$\frac{2π}{2}$=π;
(II)∵f($\frac{A}{2}$)=$\frac{1}{2}$sin(A+$\frac{π}{3}$)=$\frac{1}{2}$,可得:sin(A+$\frac{π}{3}$)=1,
∵A∈(0,π),可得:A+$\frac{π}{3}$∈($\frac{π}{3}$,$\frac{4π}{3}$),
∴A+$\frac{π}{3}$=$\frac{π}{2}$,可得:A=$\frac{π}{6}$,
∴b=$\frac{asinB}{sinA}$=$\frac{1×\frac{\sqrt{2}}{2}}{\frac{1}{2}}$=$\sqrt{2}$,C=π-A-B=$\frac{7π}{12}$,
∴S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}×$1×$\sqrt{2}$×$\frac{\sqrt{2}+\sqrt{6}}{4}$=$\frac{1+\sqrt{3}}{4}$.

点评 本题主要考查了三角函数恒等变换的应用,三角函数周期公式,正弦定理,三角形面积公式在解三角形中的综合应用,考查了转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知角α的终边经过点P(1,2),则$\frac{2sinα+3cosα}{sinα+4cosα}$的值为$\frac{7}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.7人排成一排,甲、乙两人必须相邻,且甲、乙都不与丙相邻,则不同的排法有(  )种.
A.960种B.840种C.720种D.600种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若a>0且a≠1,则函数y=loga(x-1)+2的图象恒过定点(2,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)0.027${\;}^{-\frac{1}{3}}$+($\sqrt{8}$)${\;}^{\frac{4}{3}}$-3-1+($\sqrt{2}$-1)0
(2)计算:lg25+lg4+7${\;}^{lo{g}_{7}2}$+log23•log34.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知垂直竖在水平地面上相距20米的两根旗杆的高度分别为10米和15米,地面上的动点P到两旗杆顶点的仰角相等,则点P的轨迹是圆.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若集合A=[-2,2],B=(a,+∞),A∩B=A,则实数a的取值范围是a<-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设2016∈{x,$\sqrt{{x}^{2}}$,x2},则满足条件的所有x组成的集合的真子集的个数是15个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=x2-2ax+3在区间[2,3]上是单调函数,则a的取值范围是(-∞,2]∪[3,+∞).

查看答案和解析>>

同步练习册答案