精英家教网 > 高中数学 > 题目详情
19.设集合M={x|x2-2ax-1≤0,a>0},集合N={x|x2+2x-3>0},若M∩N中恰有一个整数,则实数a的取值范围是(  )
A.(1,+∞)B.$(0,\frac{3}{4})$C.$[\frac{3}{4},\frac{4}{3})$D.$[\frac{3}{4},+∞)$

分析 先求解一元二次不等式化简集合M,N,然后分析集合B的左端点的大致位置,结合M∩N中恰含有一个整数得集合B的右端点的范围,列出无理不等式组后进行求解.

解答 解:由x2+2x-3>0,得:x<-3或x>1.
由x2-2ax-1≤0,得:a-$\sqrt{{a}^{2}+1}$≤x≤a+$\sqrt{{a}^{2}+1}$.
所以,N={x|x2+2x-3>0}={x|x<-3或x>1},
M={x|x2-2ax-1≤0,a>0}={x|a-$\sqrt{{a}^{2}+1}$≤x≤a+$\sqrt{{a}^{2}+1}$}.
因为a>0,所以a+1>$\sqrt{{a}^{2}+1}$,则a-$\sqrt{{a}^{2}-1}$>-1且小于0.
由M∩N中恰含有一个整数,所以2≤a+$\sqrt{{a}^{2}+1}$<3.
即$\left\{\begin{array}{l}{a+\sqrt{{a}^{2}+1}≥2}\\{a+\sqrt{{a}^{2}+1}<3}\end{array}\right.$,.
解得$\frac{3}{4}$≤a<$\frac{4}{3}$.
所以,满足A∩B中恰含有一个整数的实数a的取值范围是[$\frac{3}{4}$,$\frac{4}{3}$).
故选C.

点评 本题考查了交集及其运算,考查了数学转化思想,训练了无理不等式的解法,求解无理不等式是该题的一个难点.此题属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知边长为$8\sqrt{3}$的正三角形的一个顶点位于原点,另外两个顶点在抛物线C:x2=2py(p>0)上.
(1)求抛物线C的方程;
(2)已知圆过定点D(0,2),圆心M在抛物线C上运动,且圆M与x轴交于A,B两点,设|DA|<|DB|,求$\frac{{|{DA}|}}{{|{DB}|}}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若函数f(x)=x2+4x+5-c的最小值为2,则函数y=f(x-3)的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在区间[-1,2]上任取一个数x,则事件“($\frac{1}{2}$)x≥1”发生的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设变量x,y满足约束条件:$\left\{\begin{array}{l}{y≥x}\\{x+2y≤2}\\{x≥-2}\end{array}\right.$,则z=$\frac{y+2}{x+2}$ 的(  )
A.最大值为-$\frac{1}{2}$B.最小值为-$\frac{1}{2}$C.最大值为1D.最小值为1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.定义在R上的函数f(x)的导函数为f'(x),且满足f(3)=1,f(-2)=3,当x≠0时有x•f'(x)>0恒成立,若非负实数a、b满足f(2a+b)≤1,f(-a-2b)≤3,则$\frac{b+2}{a+1}$的取值范围为$[{\frac{4}{5},3}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在直角坐标系xOy中,直线l:$\left\{\begin{array}{l}{x=t}\\{y=-\sqrt{3}t}\end{array}\right.$(t为参数),曲线C1:$\left\{\begin{array}{l}{x=cosθ}\\{y=1+sinθ}\end{array}\right.$(θ为参数),以该直角坐标系的原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的方程为ρ=-2cosθ+2$\sqrt{3}$sinθ.
(1)分别求曲线C1的极坐标方程和曲线C2的直角坐标方程;
(2)设直线l交曲线C1于O、A两点,直线l交曲线C2于O、B两点,求|AB|的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设集合A={四边形},B={平行四边形},C={矩形},D={正方形},则它们之间的关系是D?C?B?A.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=(a-$\frac{1}{2}$)x2+lnx(a∈R).
(I)若函数f(x)在点(1,f(1))处的切线方程为2x+y+b=0,求a,b的值;
(II)若在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax下方,求a的取值范围.

查看答案和解析>>

同步练习册答案