如图,单位圆O上有一动直径AB,其中点A以速度π沿圆周逆时针运动,同时动直径AB上有一动点P以速度2从A出发沿AB往返运动.则点P的轨迹是( )
![]()
![]()
![]()
科目:高中数学 来源: 题型:
圆锥曲线C的两个焦点分别为F1,F2,若曲线C上存在点P满足|PF1|∶|F1F2|∶|PF2|=4∶3∶2,则曲线C的离心率为( )
A.
或
B.
或2
C.
或2 D.
或![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
已知直线l1:4x-3y+6=0和直线l2:x=-
;若拋物线C:y2=2px(p>0)上的点到直线l1和直线l2的距离之和的最小值为2.
(1)求抛物线C的方程;
(2)若以拋物线上任意一点M为切点的直线l与直线l2交于点N,试问在x轴上是否存在定点Q,使Q点在以MN为直径的圆上,若存在,求出点Q的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知椭圆C:
+
=1(a>b>0)的离心率为
,连接椭圆的四个顶点得到的四边形的面积为2
.
(1)求椭圆C1的方程;
(2)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直l1于点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知双曲线
-
=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于A,B两点,O为坐标原点.若双曲线的离心率为2,△AOB的面积为
,则p=( )
A.1 B.
C.2 D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
已知数列{an}满足3an+1+an=0,a2=-
,则{an}的前10项和等于( )
(A)-6(1-3-10) (B)
(1-310)
(C)3(1-3-10) (D)3(1+3-10)
查看答案和解析>>
科目:高中数学 来源: 题型:
设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.
(1)求数列{an}的通项公式;
(2)设数列{bn}满足
+
+…+
=1-
,n∈N* ,求{bn}的前n项和Tn.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com