分析 作出不等式组对于的平面区域,利用数形结合即可得到结论.
解答
解:作出不等式组对于的平面区域如图:
由z=x+3y,则y=$-\frac{1}{3}x$$+\frac{z}{3}$,
平移直线y=$-\frac{1}{3}x$$+\frac{z}{3}$,由图象可知当直线y=$-\frac{1}{3}x$$+\frac{z}{3}$经过点A时,
直线y=$-\frac{1}{3}x$$+\frac{z}{3}$的截距最大,此时z最大,
由$\left\{\begin{array}{l}{y=x}\\{2x+y-3=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,
即A(1,1),
此时zmax=1+1×3=4,
故答案为:4
点评 本题主要考查线性规划的应用,利用z的几何意义,利用数形结合是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | 离心率 | B. | 焦距 | C. | 长轴长 | D. | 焦点 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|0<x<1} | B. | {x|0≤x<1} | C. | {x|-1<x≤1} | D. | {x|-2<x≤1} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | b<c<a | C. | c>b>a | D. | b>a>c |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com