精英家教网 > 高中数学 > 题目详情
19.已知等差数列{an}满足:a3=3,a5+a7=12,{an}的前n项和为Sn
(1)求an及Sn
(2)令bn=$\frac{1}{{a}_{n}•({a}_{n}+1)}$(n∈N*),求数列{bn}的前10项和T10

分析 (1)设等差数列{an}的公差为d,运用等差数列的通项公式,可得首项、公差的方程,解方程可得,再由等差数列的通项公式和求和公式即可得到所求;
(2)求得bn=$\frac{1}{{a}_{n}•({a}_{n}+1)}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,运用数列的求和方法:裂项相消求和,计算即可得到所求和.

解答 解:(1)设等差数列{an}的公差为d,
由a3=3,a5+a7=12,
可得a1+2d=3,a1+4d+a1+6d=12,
解得a1=d=1,
则an=a1+(n-1)d=1+n-1=n,
Sn=$\frac{1}{2}$n(n+1);
(2)bn=$\frac{1}{{a}_{n}•({a}_{n}+1)}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
则前10项和T10=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{10}$-$\frac{1}{11}$=1-$\frac{1}{11}$=$\frac{10}{11}$.

点评 本题考查数列的通项公式和求和公式,注意运用等差数列的通项公式,考查方程思想,考查数列的求和方法:裂项相消求和,以及化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.某工厂拟生产甲、乙两种实销产品.已知每件甲产品的利润为0.4万元,每件乙产品的利润为0.3万元,两种产品都需要在A,B两种设备上加工,且加工一件甲、乙产品在A,B设备上所需工时(单位:h)分别如表所示.
  甲产品所需工时 乙产品所需工时
 A设备 2 3
 B设备 4 1
若A设备每月的工时限额为400h,B设备每月的工时限额为300h,则该厂每月生产甲、乙两种产品可获得的最大利润为(  )
A.40万元B.45万元C.50万元D.55万元

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设x,y满足约束条件$\left\{\begin{array}{l}x\;,\;y≥0\\ x-y≥-1\\ x+y≤3\end{array}\right.$,则z=x-2y的取值范围为[-3,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.定义数列{an}的“项的倒数的n倍和数”为Tn=$\frac{1}{a_1}+\frac{2}{a_2}+…+\frac{n}{a_n}(n∈{N^*})$,已知Tn=$\frac{n^2}{2}$(n∈N*),则数列{an}是(  )
A.单调递减的B.单调递增的C.先增后减的D.先减后增的

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.解不等式组:$\left\{\begin{array}{l}\frac{5}{x+3}≥1\\{x^2}+x-2≥0\end{array}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.曲线y=ex+2在点(0,3)处的切线方程为x-y+3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知直线l1:ax+y+2=0,l2:3x-y-1=0,若l1∥l2则a=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.半圆O直径为2,OA=2,B为半圆上任意一点,C为半圆外异于A的点,以AB为边按顺时针方向作正△ABC,问B在何位置时,四边形OACB面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.对a,b∈R,记$max(a\;,\;\;b)=\left\{\begin{array}{l}a\;,\;\;a≥b\\ b\;,\;\;a<b\end{array}\right.$,若f(x)=x2-2,g(x)=-x,则函数max(f(x),g(x))的最小值为-1.

查看答案和解析>>

同步练习册答案