分析 (1)设等差数列{an}的公差为d,运用等差数列的通项公式,可得首项、公差的方程,解方程可得,再由等差数列的通项公式和求和公式即可得到所求;
(2)求得bn=$\frac{1}{{a}_{n}•({a}_{n}+1)}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,运用数列的求和方法:裂项相消求和,计算即可得到所求和.
解答 解:(1)设等差数列{an}的公差为d,
由a3=3,a5+a7=12,
可得a1+2d=3,a1+4d+a1+6d=12,
解得a1=d=1,
则an=a1+(n-1)d=1+n-1=n,
Sn=$\frac{1}{2}$n(n+1);
(2)bn=$\frac{1}{{a}_{n}•({a}_{n}+1)}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
则前10项和T10=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{10}$-$\frac{1}{11}$=1-$\frac{1}{11}$=$\frac{10}{11}$.
点评 本题考查数列的通项公式和求和公式,注意运用等差数列的通项公式,考查方程思想,考查数列的求和方法:裂项相消求和,以及化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| 甲产品所需工时 | 乙产品所需工时 | |
| A设备 | 2 | 3 |
| B设备 | 4 | 1 |
| A. | 40万元 | B. | 45万元 | C. | 50万元 | D. | 55万元 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 单调递减的 | B. | 单调递增的 | C. | 先增后减的 | D. | 先减后增的 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com