精英家教网 > 高中数学 > 题目详情
10.设x,y满足约束条件$\left\{\begin{array}{l}x\;,\;y≥0\\ x-y≥-1\\ x+y≤3\end{array}\right.$,则z=x-2y的取值范围为[-3,3].

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,结合数形结合进行求解即可.

解答 解:由z=x-2y得y=$\frac{1}{2}x-\frac{z}{2}$,
作出不等式组对应的平面区域如图(阴影部分):
平移直线y=$\frac{1}{2}x-\frac{z}{2}$,
由图象可知当直线y=$\frac{1}{2}x-\frac{z}{2}$,过点A(3,0)时,
直线y=$\frac{1}{2}x-\frac{z}{2}$的截距最小,此时z最大为z=3-0=3,
由图象可知当直线y=$\frac{1}{2}x-\frac{z}{2}$,
过点B时,直线y=$\frac{1}{2}x-\frac{z}{2}$的截距最大,此时z最小,
由$\left\{\begin{array}{l}{x-y=-1}\\{x+y=3}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,即B(1,2),
代入目标函数z=x-2y,得z=1-2×2=1-4=-3,
故-3≤z≤3,
故答案为:[-3,3].

点评 本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知数列{an}的前n项和为Sn,且$\frac{1}{{a}_{n}+1}$=$\frac{3}{{a}_{n+1}+1}$,a2=5,则S6=722.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,设内角A,B,C所对边分别为a,b,c,且sin(A-$\frac{π}{6}$)-cos(A+$\frac{5π}{3}$)=$\frac{\sqrt{2}}{2}$.
(1)求角A的大小;
(2)若a=$\sqrt{5}$,sin2B+cos2C=1,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知$\overrightarrow m$=(cos$\frac{x}{2}$,sin$\frac{x}{2}$),$\overrightarrow n$=(-$\sqrt{3}$,1),x∈R,则|$\overrightarrow m$-$\overrightarrow n$|的最大值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在某次结对子活动中,有八位同学组成了四对“互助对子”他们排成一排合影留念,则使得每对“互助对子”中的两位同学都相邻的排列方法种数为384.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左焦点为F,短轴的两个端点分别为A、B,且|AB|=2,△ABF为等边三角形.
(1)求椭圆C的方程;
(2)如图,点M在椭圆C上且位于第一象限内,它关于坐标原点O的对称点为N; 过点M 作x轴的垂线,垂足为H,直线NH与椭圆C交于另一点J,若$\overrightarrow{HM}•\overrightarrow{HN}=-\frac{1}{2}$,试求以线段NJ为直径的圆的方程;
(3)已知l1、l2是过点A的两条互相垂直的直线,直线l1与圆O:x2+y2=4相交于P、Q两点,直线l2与椭圆C交于另一点R;求△PQR面积取最大值时,直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知sinx-$\sqrt{3}$cosx=2m-1,则m的取值范围是[-$\frac{1}{2}$,$\frac{3}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知等差数列{an}满足:a3=3,a5+a7=12,{an}的前n项和为Sn
(1)求an及Sn
(2)令bn=$\frac{1}{{a}_{n}•({a}_{n}+1)}$(n∈N*),求数列{bn}的前10项和T10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知$sin({\frac{π}{2}-α})=-\frac{4}{5}$,α为第二象限角,则$tan\frac{α}{2}$=3.

查看答案和解析>>

同步练习册答案