精英家教网 > 高中数学 > 题目详情
2.已知sinx-$\sqrt{3}$cosx=2m-1,则m的取值范围是[-$\frac{1}{2}$,$\frac{3}{2}$].

分析 利用两角和差的正弦公式化简等式,再利用正弦函数的值域求得m的取值范围.

解答 解:∵sinx-$\sqrt{3}$cosx=2($\frac{1}{2}$sinx-$\frac{\sqrt{3}}{2}$cosx)=2sin(x-$\frac{π}{3}$)=2m-1∈[-2,2],
∴-2≤2m-1≤2,求得-$\frac{1}{2}$≤m≤$\frac{3}{2}$,即m的取值范围为[-$\frac{1}{2}$,$\frac{3}{2}$],
故答案为:[-$\frac{1}{2}$,$\frac{3}{2}$].

点评 本题主要考查两角和差的正弦函数,正弦函数的值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.某人的身份证号码是340304199803041290,随机掷一枚骰子,出现的点数是身份证上的数字的概率为(  )
A.$\frac{2}{9}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知全集U={2,3,4,5,6,7},集合A={4,5,7},B={4,6},则A∩(∁UB)=(  )
A.{5}B.{2}C.{2,5}D.{5,7}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设x,y满足约束条件$\left\{\begin{array}{l}x\;,\;y≥0\\ x-y≥-1\\ x+y≤3\end{array}\right.$,则z=x-2y的取值范围为[-3,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知直线(a-2)x+ay-1=0与直线2x+3y-5=0垂直,则a的值为(  )
A.-6B.6C.-$\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.定义数列{an}的“项的倒数的n倍和数”为Tn=$\frac{1}{a_1}+\frac{2}{a_2}+…+\frac{n}{a_n}(n∈{N^*})$,已知Tn=$\frac{n^2}{2}$(n∈N*),则数列{an}是(  )
A.单调递减的B.单调递增的C.先增后减的D.先减后增的

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.解不等式组:$\left\{\begin{array}{l}\frac{5}{x+3}≥1\\{x^2}+x-2≥0\end{array}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知直线l1:ax+y+2=0,l2:3x-y-1=0,若l1∥l2则a=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知$α∈({\frac{π}{4}\;,\;\;\frac{π}{2}})$,化简$\sqrt{1+sinα}+\sqrt{1-sinα}-\sqrt{2+2cosα}$.

查看答案和解析>>

同步练习册答案