精英家教网 > 高中数学 > 题目详情
5.在某次结对子活动中,有八位同学组成了四对“互助对子”他们排成一排合影留念,则使得每对“互助对子”中的两位同学都相邻的排列方法种数为384.

分析 由题意,四对“互助对子”进行全排,有${A}_{4}^{4}$=24种方法,每对“互助对子”中的两位同学的排法有2种,即可得出结论.

解答 解:由题意,四对“互助对子”进行全排,
有${A}_{4}^{4}$=24种方法,每对“互助对子”中的两位同学的排法有2种,
∴使得每对“互助对子”中的两位同学都相邻的排列方法种数为24×2×2×2×2=384,
故答案为384.

点评 本题考查排列知识的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.某社区对社区内50名70岁以上老人的身体健康状况和对平时锻炼身体的积极性进行了调查,统计数据如表所示:
积极锻炼身体不积极锻炼身体合计
健康状况良好18725
健康状况一般61925
合计242650
(1)如果在被调查的老人中随机抽查一名,那么抽到积极锻炼身体的老人的概率是多少?抽到不积极锻炼身体且健康状况一般的老人的概率是多少?
(2)试运用独立性检验思想方法判断能否有99%的把握说老人的身体健康状况与锻炼身体的积极性有关.(参考如表)
 P(k2>k) 0.15 0.10 0.06 0.025 0.010 0.005 0.001
 k 2.0722.7063.841 5.0246.635 7.879 10.828
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.从某高中女学生中选取10名学生,根据其身高(cm)、体重(kg)数据,得到体重关于身高的回归方程$\widehat{y}$=0.85x-85,用来刻画回归效果的相关指数R2=0.6,则下列说法正确的是(  )
A.这些女学生的体重和身高具有非线性相关关系
B.这些女学生的体重差异有60%是由身高引起的
C.身高为170cm的学生体重一定为59.5kg
D.这些女学生的身高每增加0.85cm,其体重约增加1kg

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知全集U={2,3,4,5,6,7},集合A={4,5,7},B={4,6},则A∩(∁UB)=(  )
A.{5}B.{2}C.{2,5}D.{5,7}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知过点P(a,0)的直线l的参数方程是$\left\{\begin{array}{l}x=\frac{{\sqrt{3}}}{2}t+a\\ y=\frac{1}{2}t\end{array}\right.$(t为参数),以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ=4cosθ.
(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)若直线l与曲线C交于A,B两点,试问是否存在实数a,使得$|{\overrightarrow{PA}+\overrightarrow{PB}}|=6$且$|{\overrightarrow{AB}}|=4$?若存在,求出实数a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设x,y满足约束条件$\left\{\begin{array}{l}x\;,\;y≥0\\ x-y≥-1\\ x+y≤3\end{array}\right.$,则z=x-2y的取值范围为[-3,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知直线(a-2)x+ay-1=0与直线2x+3y-5=0垂直,则a的值为(  )
A.-6B.6C.-$\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.解不等式组:$\left\{\begin{array}{l}\frac{5}{x+3}≥1\\{x^2}+x-2≥0\end{array}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.方程cosx=lg|x|的实数根的个数是(  )
A.2个B.4个C.6个D.7个

查看答案和解析>>

同步练习册答案