精英家教网 > 高中数学 > 题目详情
15.方程cosx=lg|x|的实数根的个数是(  )
A.2个B.4个C.6个D.7个

分析 作出y=cosx和y=lg|x|的函数图象,根据函数的对称性和交点个数得出方程解的个数.

解答 解:做出y=cosx和y=lgx的函数图象如图所示:

由图象可知y=cosx和y=lgx的图象有3个交点,
∵y=cosx和y=lg|x|都是偶函数,
∴y=cosx和y=|lgx|的图象有6个交点,
∴方程cosx=lg|x|有6个根.
故选:C.

点评 本题考查了方程的根与函数图象的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.在某次结对子活动中,有八位同学组成了四对“互助对子”他们排成一排合影留念,则使得每对“互助对子”中的两位同学都相邻的排列方法种数为384.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知向量$\overrightarrow{a}$=(cosx,$-\frac{1}{2}$),$\overrightarrow{b}$=($\sqrt{3}sinx,cos2x$),x∈R,设函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(1)求f(x)的最小正周期及单调区间;
(2)求f(x)在(0,$\frac{π}{2}$)上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某同学对函数$f(x)=\frac{sinx}{x}$进行研究后,得出以下五个结论:
①函数y=f(x)的图象是轴对称图形;
②函数y=f(x)对任意定义域中x值,恒有|f(x)|<1成立;
③函数y=f(x)的图象与x轴有无穷多个交点,且每相邻两交点间距离相等;
④当常数k满足k≠0时,函数y=f(x)的图象与直线y=kx有且仅有一个公共点.
其中所有正确结论的序号是①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.$\frac{{sin({π-α})cos({4π-α})tan({-α+\frac{5π}{2}})}}{{cos({-α-π})sin({-α-π})}}$的值为-$\frac{1}{tanα}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知$sin({\frac{π}{2}-α})=-\frac{4}{5}$,α为第二象限角,则$tan\frac{α}{2}$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.位于A处的雷达观测站,发现其北偏东45°,与A相距$20\sqrt{2}$海里的B处有一货船正以匀速直线行驶,20分钟后又测得该船位于观测站A偏东45°+θ(0°<θ<45°)的C处,$AC=5\sqrt{13}$.在离观测站A的正南方某处E,$cos∠EAC=\frac{{2\sqrt{13}}}{13}$
(1)求cosθ;
(2)求该船的行驶速度v(海里/小时).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合A={1,2,3},B={-1,0,1},满足条件f(3)=f(1)+f(2)的映射f:A→B的个数是(  )
A.2B.4C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.log${\;}_{\frac{1}{2}}$|x-$\frac{π}{3}$|≥log${\;}_{\frac{1}{2}}$$\frac{π}{2}$的解集为(  )
A.{x|-$\frac{π}{6}$≤x≤$\frac{5}{6}$π}B.{x|x≤-$\frac{π}{6}$,或x≥$\frac{5}{6}$π}
C.{x|-$\frac{π}{6}$≤x≤$\frac{5}{6}$π且x≠$\frac{π}{3}$}D.{x|-$\frac{5π}{6}$≤x≤$\frac{5π}{6}$且x≠$\frac{π}{3}$}

查看答案和解析>>

同步练习册答案