分析 (1)根据平面向量的数量积化函数f(x)为正弦型函数,求出它的最小正周期;
根据正弦函数的单调性求出f(x)的单调增、单调减区间;
(2)根据x∈(0,$\frac{π}{2}$)时2x-$\frac{π}{6}$的取值范围,求出f(x)的最大值为1,且无最小值.
解答 解:(1)向量$\overrightarrow{a}$=(cosx,$-\frac{1}{2}$),$\overrightarrow{b}$=($\sqrt{3}sinx,cos2x$),x∈R,
∴函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$=$\sqrt{3}$sinxcosx-$\frac{1}{2}$cos2x
=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x
=sin(2x-$\frac{π}{6}$),
∴f(x)的最小正周期为T=$\frac{2π}{ω}$=π;
令-$\frac{π}{2}$+2kπ≤2x-$\frac{π}{6}$≤$\frac{π}{2}$+2kπ,
解得-$\frac{π}{6}$+kπ≤x≤$\frac{π}{3}$+kπ,k∈Z;
∴f(x)的单调增区间为[-$\frac{π}{6}$+kπ,$\frac{π}{3}$+kπ],k∈Z;
同理,f(x)的单调减区间为[$\frac{π}{3}$+kπ,$\frac{5π}{6}$+kπ],k∈Z;
(2)x∈(0,$\frac{π}{2}$)时,2x-$\frac{π}{6}$∈(-$\frac{π}{6}$,$\frac{5π}{6}$),
∴-$\frac{1}{2}$<sin(2x-$\frac{π}{6}$)≤1;
令2x-$\frac{π}{6}$=$\frac{π}{2}$,解得x=$\frac{π}{3}$,此时f(x)取得最大值1;
且f(x)无最小值.
点评 本题考查了平面向量的数量积以及正弦型函数的图象与性质的应用问题,是综合题.
科目:高中数学 来源: 题型:选择题
| A. | 这些女学生的体重和身高具有非线性相关关系 | |
| B. | 这些女学生的体重差异有60%是由身高引起的 | |
| C. | 身高为170cm的学生体重一定为59.5kg | |
| D. | 这些女学生的身高每增加0.85cm,其体重约增加1kg |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -6 | B. | 6 | C. | -$\frac{4}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com