精英家教网 > 高中数学 > 题目详情
8.半圆O直径为2,OA=2,B为半圆上任意一点,C为半圆外异于A的点,以AB为边按顺时针方向作正△ABC,问B在何位置时,四边形OACB面积最大?

分析 设∠AOB=θ,AB=x,则由余弦定理求得 x2=5-4cosθ.再利用两角和差的正弦公式化简SOACB =S△AOB+S△ABC 的解析式,从而求得SOACB的面积取得最大值.

解答 解:设∠AOB=θ,则SOACB =S△AOB+S△ABC
设AB=x,则x2=OB2+OA2-2OB•OAcosθ=12+22-2×1×2•cosθ=5-4cosθ.
故 SOACB=S△AOB+S△ABC=$\frac{1}{2}$×1×2•sinθ+$\frac{1}{2}•x•x•sin\frac{π}{3}$
=sinθ+$\frac{\sqrt{3}}{4}$(5-4cosθ)=$\frac{5\sqrt{3}}{4}$+2sin(θ-$\frac{π}{3}$),
∴当sin(θ-$\frac{π}{3}$)=1,即θ=$\frac{5π}{6}$时,四边形OACB的面积取得最大值.

点评 本题主要余弦定理的应用,两角和差的正弦公式、正弦函数的最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知$\overrightarrow m$=(cos$\frac{x}{2}$,sin$\frac{x}{2}$),$\overrightarrow n$=(-$\sqrt{3}$,1),x∈R,则|$\overrightarrow m$-$\overrightarrow n$|的最大值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知等差数列{an}满足:a3=3,a5+a7=12,{an}的前n项和为Sn
(1)求an及Sn
(2)令bn=$\frac{1}{{a}_{n}•({a}_{n}+1)}$(n∈N*),求数列{bn}的前10项和T10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数$y=tanx+cotx({0<x<\frac{π}{4}})$的值域为(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某同学对函数$f(x)=\frac{sinx}{x}$进行研究后,得出以下五个结论:
①函数y=f(x)的图象是轴对称图形;
②函数y=f(x)对任意定义域中x值,恒有|f(x)|<1成立;
③函数y=f(x)的图象与x轴有无穷多个交点,且每相邻两交点间距离相等;
④当常数k满足k≠0时,函数y=f(x)的图象与直线y=kx有且仅有一个公共点.
其中所有正确结论的序号是①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,长为2,宽为1的矩形木块,在桌面上作无滑动翻滚,翻滚到第三面后被一小木块挡住,使木块底与桌面成30°角,则点A走过的路程是$\frac{7}{6}π+\frac{\sqrt{5}}{2}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知$sin({\frac{π}{2}-α})=-\frac{4}{5}$,α为第二象限角,则$tan\frac{α}{2}$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若等式cosx•cosy=cos(x+y)成立,则x,y应满足的条件为x=kπ,或y=kπ,k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={2,4,6},集合B={1},则A∪B等于(  )
A.{1,2,4,6}B.{0,1,8,10}C.{0,8,10}D.

查看答案和解析>>

同步练习册答案