【题目】如图,已知抛物线y2=4x的焦点为F.过点P(2,0)的直线交抛物线于A(x1 , y1),B(x2 , y2)两点,直线AF,BF分别与抛物线交于点M,N. ![]()
(1)求y1y2的值;
(2)记直线MN的斜率为k1 , 直线AB的斜率为k2 . 证明:
为定值.
【答案】
(1)解:依题意,设直线AB的方程为x=my+2
将其代入y2=4x,消去x,整理得 y2﹣4my﹣8=0.
从而y1y2=﹣8.
(2)证明:设M(x3,y3),N(x4,y4).
则
=
×
=
×
=
.
设直线AM的方程为x=ny+1,将其代入y2=4x,消去x,
整理得y2﹣4ny﹣4=0.
所以y1y3=﹣4.
同理可得 y2y4=﹣4
故
=
=
=
.
由(1)得
=2,为定值.
![]()
【解析】(1)依题意,设直线AB的方程为x=my+2,与抛物线方程联立消x得关于y的一元二次方程,根据韦达定理即可求得y1y2;(2)设M(x3 , y3),N(x4 , y4),设直线AM的方程为x=ny+1,将其代入y2=4x,消去x,得到关于y的一元二次方程,从而得y1y3=﹣4,同理可得 y2y4=﹣4,根据斜率公式可把
表示成关于y1与y2的表达式,再借助(1)的结果即可证明.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在极坐标系中,曲线
的极坐标方程为
,以极点为原点,极轴为
轴的正半轴建立平面直角坐标系,直线
的参数方程为
(
为参数).
(1)写出曲线
的参数方程和直线
的普通方程;
(2)已知点
是曲线
上一点,求点
到直线
的最小距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校甲、乙、丙、丁四个专业分别有150、150、400、300名学生,为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,曲线
,曲线
.以极点为坐标原点,极轴为
轴正半轴建立平面直角坐标系
,曲线
的参数方程为
(
为参数).
(1)求
的直角坐标方程;
(2)
与
交于不同的四点,这四点在
上排列顺次为
,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com