精英家教网 > 高中数学 > 题目详情
4.已知${({2x-3})^4}={a_0}+{a_1}(x-2)+{a_2}{(x-2)^2}+{a_3}{(x-2)^3}+{a_4}{(x-2)^4}$,则a2=(  )
A.24B.56C.80D.216

分析 ${({2x-3})^4}={a_0}+{a_1}(x-2)+{a_2}{(x-2)^2}+{a_3}{(x-2)^3}+{a_4}{(x-2)^4}$,对两边两次求导,令x=2即可得出.

解答 解:∵${({2x-3})^4}={a_0}+{a_1}(x-2)+{a_2}{(x-2)^2}+{a_3}{(x-2)^3}+{a_4}{(x-2)^4}$,
两边求导可得:8(2x-3)3=a1+2a2(x-2)+3a3(x-2)2+4a4(x-2)3
再一次求导可得:48(2x-3)2=2a2+6a3(x-2)+8a4(x-2)2
令x=2,则a2=24.
故选:A.

点评 本题考查了导数的运算法则、二项式定理的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.设函数f(x)=x+cosx,x∈(0,1),则满足不等式f(t2)>f(2t-1)的实数t的取值范围是$\frac{1}{2}$<t<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知集合A={-1,1,2},B={0,1,2,7},则集合A∪B中元素的个数为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图是甲、乙两名篮球运动员在五场比赛中所得分数的茎叶图,则在这五场比赛中得分较为稳定(方差较小)的那名运动员的得分的方差为$\frac{34}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在三棱锥A-BCD中,E,F分别为BC,CD上的点,且BD∥平面AEF.
(1)求证:EF∥平ABD面;
(2)若AE⊥平面BCD,BD⊥CD,求证:平面AEF⊥平面ACD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.漳州水仙鳞茎硕大,箭多花繁,色美香郁,素雅娟丽,有“天下水仙数漳州”之美誉.现某水仙花雕刻师受雇每天雕刻250粒水仙花,雕刻师每雕刻一粒可赚1.2元,如果雕刻师当天超额完成任务,则超出的部分每粒多赚0.5元;如果当天未能按量完成任务,则按完成的雕刻量领取当天工资.
(Ⅰ)求雕刻师当天收入(单位:元)关于雕刻量n(单位:粒,n∈N)的函数解析式f(n);
(Ⅱ)该雕刻师记录了过去10天每天的雕刻量n(单位:粒),整理得如表:
雕刻量n210230250270300
频数12331
以10天记录的各雕刻量的频率作为各雕刻量发生的概率.
(ⅰ)在当天的收入不低于276元的条件下,求当天雕刻量不低于270个的概率;
(ⅱ)若X表示雕刻师当天的收入(单位:元),求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在数列{an}中,a1=2,an+1=an+2,Sn为{an}的前n项和,则S10=(  )
A.90B.100C.110D.130

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.θ是第三象限的角.则(  )
A.cos$\frac{θ}{2}$>0           B.sin$\frac{θ}{2}$>0            C.tan$\frac{θ}{2}$>0            D.cot$\frac{θ}{2}$<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知等比数列{an}的前n项和为Sn,公比q=3,S3+S4=$\frac{53}{3}$,则a3=3.

查看答案和解析>>

同步练习册答案