【题目】如图所示,由一块扇形空地
,其中
,
米,计划在此扇形空地区域为学生建灯光篮球运动场,
区域内安装一批照明灯,点
、
选在线段
上(点
、
分别不与点
、
重合),且
.
![]()
(1)若
点在距离
点
米处,求点
、
之间的距离;
(2)为了使运动场地区域最大化,要求
面积尽可能的小,记
,请用
表示
的面积
,并求
的最小值.
科目:高中数学 来源: 题型:
【题目】已知
是抛物线
上一点,经过点
的直线
与抛物线
交于
、
两点(不同于点
),直线
、
分别交直线
于点
、
.
(1)求抛物线方程及其焦点坐标;
(2)求证:以
为直径的圆恰好经过原点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱
的侧面
是平行四边形,
,平面
平面
,且
分别是
的中点.
![]()
(Ⅰ)求证:
;
(Ⅱ)求证:
平面
;
(Ⅲ)在线段
上是否存在点
,使得
平面
?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线
的左右焦点分别为
,
,实轴长为6,渐近线方程为
,动点
在双曲线左支上,点
为圆
上一点,则
的最小值为
A. 8 B. 9 C. 10 D. 11
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥中
,底面
为菱形,
,
平面
,
、
分别是
、
上的中点,直线
与平面
所成角的正弦值为
,点
在
上移动.
![]()
(Ⅰ)证明:无论点
在
上如何移动,都有平面
平面
;
(Ⅱ)求点
恰为
的中点时,二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知关于
的二项式
的展开式的二项式系数之和为1024,常数项为180.
(1)求
和
的值;
(2)求展开式中的无理项.(不需求项的表达式,指出无理项的序号即可)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com