精英家教网 > 高中数学 > 题目详情
17.若实数x,y满足不等式组$\left\{\begin{array}{l}x+3y-3≤0\\ x-y+1≥0\\ y≥-1\end{array}\right.$,则z=2|x|+y的最大值为(  )
A.13B.11C.3D.1

分析 将z=2|x|+y转化为分段函数,利用数形结合即可得到结论.

解答 解:作出不等式组对应的平面区域如图:
由$\left\{\begin{array}{l}{y=-1}\\{x+3y-3=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=6}\\{y=-1}\end{array}\right.$,即B(6,-1),
由$\left\{\begin{array}{l}{y=-1}\\{x-y+1=0}\end{array}\right.$,解$\left\{\begin{array}{l}{x=-2}\\{y=-1}\end{array}\right.$,即C(-2,-1),
当x≥0时,z=2x+y,即y=-2x+z,x≥0,
当x<0时,z=-2x+y,即y=2x+z,x<0,
当x≥0时,平移直线y=-2x+z,(红线),
当直线y=-2x+z经过点A(0,-1)时,
直线y=-2x+z的截距最小为z=-1,
当y=-2x+z经过点B(6,-1)时,
直线y=-2x+z的截距最大为z=11,此时-1≤z≤11.
当x<0时,平移直线y=2x+z,(蓝线),
当直线y=2x+z经过点A(0,-1)时,直线y=2x+z的截距最小为z=-1,
当y=2x+z经过点C(-2,-1)时,
直线y=2x+z的截距最大为z=4-1=3,此时-1≤z≤3,
综上-1≤z≤11,
故z=2|x|+y的取值范围是[-1,11],
故z的最大值为11,
故选:B.

点评 本题主要考查线性规划的应用,将目标函数转化为分段函数,利用两次平移,是解决本题的关键,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.如图所示的流程图,最后输出n的值是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.化简:cos2A+cos2($\frac{2π}{3}$+A)+cos2($\frac{4π}{3}$+A)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在2014年教师节来临之际,某学校计划为教师颁发一定的奖励,该学校计划采用说课评价与讲课评价相结合的方式来决定教师获得奖励的等级.已知说课评价和讲课评价的成绩都分为1分,2分,3分,4分,5分,共5个等级.所有教师说课评价与讲课评价成绩的频率分布情况如图所示(参加评价的每个教师两种评价都参加了),其中讲课评价成绩为5分的有12人.

(1)求该学校参加评价活动的教师总人数;
(2)若在说课评价为2分的教师中,讲课评价也为2分的有4人,其余讲课评价均为3分.若从说课评价为2分的教师中选取2人进行座谈,求这2人说课评价与讲课评价总分的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若实数x,y满足不等式组$\left\{\begin{array}{l}x+3y-3≤0\\ x-y+1≥0\\ y≥-1\end{array}\right.$则z=2|x|+y的取值范围是(  )
A.[-1,3]B.[1,11]C.[1,3]D.[-1,11]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.执行如图所示的程序框图,则输出S的值等于(  )
A.$\frac{1}{{{2^{2014}}}}$B.$\frac{1}{{{2^{2015}}}}$C.$\frac{1}{{{2^{2016}}}}$D.$\frac{1}{{{2^{2017}}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,抛物线E:y2=2px(p>0)的焦点为F,其准线l与x轴交于点A,过抛物线E上的动点p作PD⊥l于点D.当∠DPF=$\frac{2π}{3}$时,|PF|=4.
(Ⅰ)求抛物线E的方程;
(Ⅱ)过点P作直线m⊥DF,求直线m与抛物线E的交点个数;
(Ⅲ)点C是△DPF的外心,是否存在点P,使得△CDP的面积最小.若存在,请求出面积的最小值及P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.一个几何体的三视图如图,则其表面积为(  )
A.20B.18C.14+2$\sqrt{3}$D.14+2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,过其右焦点F且垂直于x轴的弦MN的长度为b.
(Ⅰ)求该椭圆的离心率;
(Ⅱ)已知点A的坐标为(0,b),椭圆上存在点P,Q,使得圆x2+y2=4内切于△APQ,求该椭圆的方程.

查看答案和解析>>

同步练习册答案