精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线的顶点为坐标原点,焦点轴的正半轴上,过焦点作斜率为的直线交抛物线两点,且,其中为坐标原点.

(1)求抛物线的方程;

(2)设点,直线分别交准线于点,问:在轴的正半轴上是否存在定点,使,若存在,求出定点的坐标,若不存在,试说明理由.

【答案】(1) (2) 在轴的正半轴上存在定点,使,且定点的坐标为

【解析】试题分析:(1)设抛物线的标准方程为,直线的方程为,且),联立,消去,得.巧用韦达定理表示,从而得到抛物线的方程;

(2)假设在轴上存在定点,使, 设,由(1),知.明确,得,从而得到出定点的坐标.

试题解析:

(1)由题意知

设抛物线的标准方程为,直线的方程为,且),

联立,消去,得.

.

所以

解得.

所以抛物线的标准方程为.

(2)假设在轴上存在定点,使

由(1),知.

,设直线的斜率分别为

则直线的方程为

,得

同理,得.

.

,得

解得 (负值舍去),

即在轴的正半轴上存在定点,使,且定点的坐标为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本题满分15分)如图,在半径为的半圆形(O为圆心)铁皮上截取一块矩形材料ABCD,其中点A、B在直径上,点C、D在圆周上,将所截得的矩形铁皮ABCD卷成一个以AD为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),记圆柱形罐子的体积为

(1)按下列要求建立函数关系式:

,将表示为的函数;

),将表示为的函数;

(2)请选用(1)问中的一个函数关系,求圆柱形罐子的最大体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点分别为 ,过点的直线与椭圆相交于两点,且,

1求椭圆的离心率;

2设点C与点A关于坐标原点对称,直线上有一点 的外接圆上,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中有一个“引葭赴岸”问题:“今有池方一丈,葭生其中央.出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何?”其意思为“今有水池1丈见方(即尺),芦苇生长在水的中央,长出水面的部分为1.将芦苇向池岸牵引,恰巧与水岸齐接(如图所示).试问水深、芦苇的长度各是多少?假设,现有下述四个结论:

①水深为12尺;②芦苇长为15尺;③;④.

其中所有正确结论的编号是(

A.①③B.①③④C.①④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,平面平面,,

分别为棱的中点.

(1)求证:

(2)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P到两定点M-10)、N10)距离的比为,点N到直线PM的距离为1,求直线PN的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年1月1日,我国全面实行二孩政策,某机构进行了街头调查,在所有参与调查的青年男女中,持“响应”“犹豫”和“不响应”态度的人数如下表所示:

响应

犹豫

不响应

男性青年

500

300

200

女性青年

300

200

300

根据已知条件完成下面的列联表,并判断能否有的把握认为犹豫与否与性别有关?请说明理由.

犹豫

不犹豫

总计

男性青年

女性青年

总计

1800

参考公式:

参考数据:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线过定点.

1)点在圆上运动,求的最小值,并求出此时点的坐标.

2)若与圆C相交于两点,线段的中点为,又的交点为,判断是否为定值.若是,求出定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别是正方体的棱上两点,且,给出下列四个命题正确的是( )

A.异面直线所成的角为

B.平面

C.三棱锥的体积为定值;

D.直线与平面所成的角为.

查看答案和解析>>

同步练习册答案