【题目】已知点P到两定点M(-1,0)、N(1,0)距离的比为
,点N到直线PM的距离为1,求直线PN的方程.
【答案】y=x-1或y=-x+1.
【解析】
设P的坐标为(x,y),由题意点P到两定点M(﹣1,0)、N(1,0)距离的比为
,可得
,结合两点间的距离,化简整理得x2+y2﹣6x+1=0,又由点N到PM的距离为1,即|MN|=2,可得直线PM的斜率,进而可得直线PM的方程,并将方程代入x2+y2﹣6x+1=0整理得x2﹣4x+1=0,解可得x的值,进而得P的坐标,由直线的方程代入点的坐标可得答案.
设P的坐标为(x,y),由题意有
,
即
,
整理得x2+y2﹣6x+1=0,
因为点N到PM的距离为1,|MN|=2
所以PMN=30°,直线PM的斜率为![]()
直线PM的方程为![]()
将
代入x2+y2﹣6x+1=0整理得x2﹣4x+1=0
解得
,![]()
则点P坐标为
或
或![]()
直线PN的方程为y=x﹣1或y=﹣x+1.
科目:高中数学 来源: 题型:
【题目】(本小题满分13分)已知函数
(
为常数,
)
(1)若
是函数
的一个极值点,求
的值;
(2)求证:当
时,
在
上是增函数;
(3)若对任意的
,总存在
,使不等式
成立,求正实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
的顶点为坐标原点,焦点
在
轴的正半轴上,过焦点
作斜率为
的直线交抛物线
于
两点,且
,其中
为坐标原点.
(1)求抛物线
的方程;
(2)设点
,直线
分别交准线
于点
,问:在
轴的正半轴上是否存在定点
,使
,若存在,求出定点
的坐标,若不存在,试说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆W:
(a>b>0)的离心率
,其右顶点A(2,0),直线l过点B(1,0)且与椭圆交于C,D两点.
(Ⅰ)求椭圆W的标准方程;
(Ⅱ)判断点A与以CD为直径的圆的位置关系,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的年收益与投资额成正比,投资股票等风险型产品的年收益与投资额的算术平方根成正比.已知投资1万元时两类产品的年收益分别为0.125万元和0.5万元(如图).
![]()
![]()
(1)分别写出两种产品的年收益与投资额的函数关系式;
(2)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大年收益,其最大年收益是多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左顶点,右焦点分别为
,右准线为
,
(1)若直线
上不存在点
,使
为等腰三角形,求椭圆离心率的取值范围;
(2)在(1)的条件下,当
取最大值时,
点坐标为
,设
是椭圆上的三点,且
,求:以线段
的中心为原点,过
两点的圆方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com