【题目】如图,在四棱锥
中,四边形
为正方形,
平面
,
,
是
上一点,且
.
![]()
(1)求证:
平面
;
(2)求直线
与平面
所成角的正弦值.
【答案】(1)证明见解析;(2)
.
【解析】试题分析:
(1)连接
,由线面垂直的性质定理可得
,且
,故
平面
,
,又
,利用线面垂直的判断定理可得
平面
.
(2)法1:由(1)知
平面
,即
是直线
与平面
所成角,设
,则
,
,
,结合几何关系计算可得
,即直线
与平面
所成角的正弦值为
.
法2:取
为原点,直线
,
,
分别为
,
,
轴,建立坐标系
,不妨设
,结合(1)的结论可得平面
得法向量
,而
,据此计算可得直线
与平面
所成角的正弦值为
.
试题解析:
(1)连接
,由
平面
,
平面
得
,
又
,
,
∴
平面
,得
,
又
,
,
∴
平面
.
(2)法1:由(1)知
平面
,即
是直线
与平面
所成角,易证
,而
,
不妨设
,则
,
,
,
在
中,由射影定理得
,
可得
,所以
,
故直线
与平面
所成角的正弦值为
.
![]()
法2:取
为原点,直线
,
,
分别为
,
,
轴,建立坐标系
,不妨设
,则
,
,
,
由(1)知平面
得法向量
,而
,
∴
.
故直线
与平面
所成角的正弦值为
.
![]()
科目:高中数学 来源: 题型:
【题目】已知直线
的参数方程为
(其中
为参数),以坐标原点
为极点,以
轴正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
(其中
).
(1)若点
的直角坐标为
,且点
在曲线
内,求实数
的取值范围;
(2)若
,当
变化时,求直线
被曲线
截得的弦长的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,a、b、c分别是角A、B、C的对边,S是该三角形的面积,且![]()
(1)求角A的大小;
(2)若角A为锐角,
,求边BC上的中线AD的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司发放员工的薪水有三种方式:①第一个月工资3000元,以后每月以1%的增长率增长;②第一个月工资2400元,以后每月以2%的增长率增长;③第一个月工资为3200元,每月涨工资30元.
(1)设第x个月的工资分别为
元,试分别建立
关于x的函数;
(2)借助计算器计算这三种情况下各个月的工资;
(3)请分析这三种领薪方法的区别,作为员工选择何种方法更合算?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分15分)如图,在半径为
的半圆形(O为圆心)铁皮上截取一块矩形材料ABCD,其中点A、B在直径上,点C、D在圆周上,将所截得的矩形铁皮ABCD卷成一个以AD为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),记圆柱形罐子的体积为![]()
.
![]()
(1)按下列要求建立函数关系式:
①设
,将
表示为
的函数;
②设
(
),将
表示为
的函数;
(2)请您选用(1)问中的一个函数关系,求圆柱形罐子的最大体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为了解高二年级学生某次数学考试成绩的分布情况,从该年级的1120名学生中随机抽取了100名学生的数学成绩,发现都在
内现将这100名学生的成绩按照
,
,
,
,
,
,
分组后,得到的频率分布直方图如图所示,则下列说法正确的是
![]()
![]()
A. 频率分布直方图中a的值为![]()
B. 样本数据低于130分的频率为![]()
C. 总体的中位数
保留1位小数
估计为
分
D. 总体分布在
的频数一定与总体分布在
的频数相等
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下表提供了工厂技术改造后某种型号设备的使用年限x和所支出的维修费y(万元)的几组对照数据:
x(年) | 2 | 3 | 4 | 5 | 6 |
y(万元) | 1 | 2.5 | 3 | 4 | 4.5 |
(1)若知道y对x呈线性相关关系,请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程
;
(2)已知该工厂技术改造前该型号设备使用10年的维修费用为9万元,试根据(1)求出的线性回归方程,预测该型号设备技术改造后,使用10年的维修费用能否比技术改造前降低?参考公式:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线
=1,P为双曲线右支上除x轴上之外的一点.
(1)若∠F1PF2=θ,求△F1PF2的面积.
(2)若该双曲线与椭圆
+y2=1有共同的焦点且过点A(2,1),求△F1PF2内切圆的圆心轨迹方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com