精英家教网 > 高中数学 > 题目详情

【题目】函数f(x)= sin(ωx+φ)﹣cos(ωx+φ)(0<φ<π,ω>0)对任意x∈R,都有f(﹣x)+f(x)=0,f(x)+f(x+ )=0,则f( )=(
A.0
B.1
C.
D.2

【答案】D
【解析】解:∵f(x)= sin(ωx+φ)﹣cos(ωx+φ)=2sin(ωx+φ﹣ ),f(﹣x)+f(x)=0, ∴函数y=f(x)为奇函数,φ﹣ =kπ,k∈Z,解得:φ= +kπ,k∈Z,
∵0<φ<π,
∴φ= ,可得f(x)=2sinωx,
∵对任意x∈R,f(x)+f(x+ )=0,可得:f(0)+f( )=0,
∴2sin0+2sin ω=0,解得: ω=kπ,k∈Z,解得:ω=2k,k∈Z,
∵ω>0,不妨取k=1,可得ω=2,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知单位圆O上的两点A,B及单位圆所在平面上的一点P,满足 =m + (m为常数).

(1)如图,若四边形OABP为平行四边形,求m的值;
(2)若m=2,求| |的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,以坐标原点O为圆心的单位圆与x轴正半轴相交于点A,点B,P在单位圆上,且B(﹣ ),∠AOB=α.

(1)求 的值;
(2)设∠AOP=θ( ≤θ≤ π), = + ,四边形OAQP的面积为S,f(θ)=( ﹣1)2+ S﹣1,求f(θ)的最值及此时θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若椭圆 + =1的焦点在x轴上,过点(1, )作圆x2+y2=1的切线,切点分别为A,B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆方程是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A(1, )是离心率为 的椭圆E: + =1(a>b>0)上的一点,过A作两条直线交椭圆于B、C两点,若直线AB、AC的倾斜角互补.
(1)求椭圆E的方程;
(2)试证明直线BC的斜率为定值,并求出这个定值;
(3)△ABC的面积是否存在最大值?若存在,求出这个最大值?若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列是有关三角形ABC的几个命题,
①若tanA+tanB+tanC>0,则△ABC是锐角三角形;
②若sin2A=sin2B,则△ABC是等腰三角形;
③若( + =0,则△ABC是等腰三角形;
④若cosA=sinB,则△ABC是直角三角形;
其中正确命题的个数是( )
A..1
B..2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为自然对数的底数).

(1)若曲线在点处的切线斜率为0,且有极小值,

求实数的取值范围.

(2)当 时,若不等式: 在区间内恒成立,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的奇函数,且当时, ,则对任意,函数的零点个数至多有( )

A. 3个 B. 4个 C. 6个 D. 9个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小华准备购买一台售价为5000元的电脑,采用分期付款方式,并在一年内将款全部付清,商场提出的 付款方式为:购买后二个月第一次付款,再过二个月第二次付款…,购买后12个月第六次付款,每次付
款金额相同,约定月利率为0.8%每月利息按复利计算.求小华每期付款的金额是多少?

查看答案和解析>>

同步练习册答案