精英家教网 > 高中数学 > 题目详情
4.若a=ln$\frac{1}{2}$,b=($\frac{1}{3}$)0.8,c=2${\;}^{\frac{1}{3}}$,则(  )
A.a<c<bB.a<b<cC.c<a<bD.b<a<c

分析 利用指数函数与对数函数的单调性即可得出.

解答 解:a=ln$\frac{1}{2}$<0,b=($\frac{1}{3}$)0.8∈(0,1),c=2${\;}^{\frac{1}{3}}$>1,
∴c>b>a.
故选:B.

点评 本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.在区间[-2,4]上随机地取一个数x,使${a^2}+\frac{1}{{{a^2}+1}}≥|x|$恒成立的概率是(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,A=60°,b=1,${S_{△ABC}}=\sqrt{3}$,则$\frac{c}{sinC}$=(  )
A.$\frac{{8\sqrt{3}}}{81}$B.$\frac{{2\sqrt{39}}}{3}$C.$\frac{{26\sqrt{3}}}{3}$D.$2\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.阅读如图的框图,则输出的S=(  )
A.30B.29C.55D.54

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在四边形ABCD中,∠ADC=∠BCD=120°,AD=DC=2CB=1,则$\overrightarrow{AB}$•$\overrightarrow{AC}$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,O为为AD上的一点,且AB⊥AD,CO⊥AD,AB=AO=$\frac{1}{3}$AD=$\frac{1}{2}$OC=1,OP=$\frac{1}{2}$CD,PA=$\sqrt{3}$.
(1)求证:PD⊥平面PAB;
(2)求平面PAB与平面PBC所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若sinα=$\frac{5}{13}$,且α为第二象限角,则tanα的值等于(  )
A.$\frac{12}{5}$B.-$\frac{12}{5}$C.$\frac{5}{12}$D.-$\frac{5}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.z=3-4i,则复数z-|z|+(1-i)在复平面内的对应点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.等差数列{an}中的a2、a4032是函数$f(x)=\frac{1}{3}{x^3}-4{x^2}+6x-1$的两个极值点,则log2(a2•a2017•a4032)=(  )
A.$4+log_2^6$B.4C.$3+log_2^3$D.$4+log_2^3$

查看答案和解析>>

同步练习册答案