分析 先设x>0,则-x<0,根据x≤0时f(x)的解析式可求出x>0的解析式,用分段函数的形式表示出f(x).
解答 解:设x>0,则-x<0,
∵当x≤0时,f(x)=x2-2x,
∴f(-x)=(-x)2-2(-x)=x2+2x,
∵函数y=f(x)是偶函数,
∴f(x)=f(-x)=x2+2x,
则$f(x)=\left\{\begin{array}{l}{{x}^{2}+2x,x>0}\\{{x}^{2}-2x,x≤0}\end{array}\right.$,
故答案为:$f(x)=\left\{\begin{array}{l}{{x}^{2}+2x,x>0}\\{{x}^{2}-2x,x≤0}\end{array}\right.$.
点评 本题考查利用函数的奇偶性求函数在对称区间上的解析式,以及转化与化归的思想方法.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 原材料 | 沉鱼落雁(吨) | 国色天香(吨) | 可用资源数量(吨) |
| A | 3 | 2 | 20 |
| B | 3 | 1 | 20 |
| C | 2 | 5 | 25 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分非必要条件 | B. | 必要非充分条件 | ||
| C. | 充要条件 | D. | 非充分非必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | m=2 n=2 | B. | m=2 n=6 | C. | m=3 n=7 | D. | m=3 n=8 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com