【题目】已知函数的图像关于直线对称,且.
(1)求的表达式;
(2)若将图像上各点的横坐标变为原来的,再将所得图像向右平移个单位,得到的图像,且关于的方程在区间上有且只有一个实数解,求实数的取值范围.
【答案】(1)
(2)或
【解析】
(1)由三角恒等变换可得,再结合函数图像的对称性即可求出;
(2)由三角函数图像的变换可得:将图像上各点的横坐标变为原来的,再将所得图像向右平移个单位,得到的图像,则,再作出函数在区间的图像,再观察函数的图像与直线在区间上的交点个数即可.
解:(1)因为,
又函数的图像关于直线对称,
则,解得,
又,即,
即,
(2)将图像上各点的横坐标变为原来的,得函数图像所对应的解析式为,再将所得图像向右平移个单位,得到的图像,则,
由关于的方程在区间上有且只有一个实数解,
则函数的图像与直线在区间上有且只有一个交点,
又函数在区间上的图像如图所示,
则数的图像与直线在区间上有且只有一个交点时,或,
即实数的取值范围为或.
科目:高中数学 来源: 题型:
【题目】设F1,F2分别是椭圆E: (a>b>0)的左、右焦点,过点F1的直线交椭圆E于A,B两点,|AF1|=3|BF1|,若cos∠AF2B=,则椭圆E的离心率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,圆C的参数方程为,(t为参数),在以原点O为极点,x轴的非负半轴为极轴建立的极坐标系中,直线l的极坐标方程为,A,B两点的极坐标分别为.
(1)求圆C的普通方程和直线l的直角坐标方程;
(2)点P是圆C上任一点,求△PAB面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数是定义在R上的奇函数,当时,.
(Ⅰ)求函数在R上的解析式;
(Ⅱ)若,函数,是否存在实数m使得的最小值为,若存在,求m的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某建筑工地搭建的脚手架局部类似于一个 的长方体框架,一个建筑工人欲从处沿脚手架攀登至 处,则其最近的行走路线中不连续向上攀登的概率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校计划利用周五下午第一、二、三节课举办语文、数学、英语、理综4科的专题讲座,每科一节课,每节至少有一科,且数学、理综不安排在同一节,则不同的安排方法共有( )
A. 6种 B. 24种 C. 30种 D. 36种
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com