精英家教网 > 高中数学 > 题目详情
过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,O为坐标原点.若|AF|=3,求△AOB的面积.
考点:抛物线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:根据抛物线的定义方程求解得出:A(2,2
2
),即直线AF的方程为y=2
2
(x-1).
立直线与抛物线的方程
y=2
2
(x-1)
y2=4x
B(
1
2
,-
2
),运用S△AOB=
1
2
|OF|•|yA-yB|求解即可.
解答: 解:如图所示,由题意知,抛物线的焦点F的坐标为(1,0),
又|AF|=3,由抛物线定义知:点A到准线x=-1的距离为3,
∴点A的横坐标为2.
将x=2代入y2=4x得y2=8,由图知点A的纵坐标y=2
2

∴A(2,2
2
),
∴直线AF的方程为y=2
2
(x-1). 
联立直线与抛物线的方程
y=2
2
(x-1)
y2=4x

解之得 
x=
1
2
y=-
2
x=2
y=2
2

由图知B(
1
2
,-
2
),
∴S△AOB=
1
2
|OF|•|yA-yB|=
1
2
×1×|2
2
+
2
|=
3
2
2
点评:本题考查了抛物线的几何性质,直线与抛物线的位置关系,运用方程组求解即可,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a,b,c为正数,a+b+9c2=1,则
a
+
b
+
3
c
的最大值是(  )
A、
7
3
B、
5
3
C、
21
3
D、
15
3

查看答案和解析>>

科目:高中数学 来源: 题型:

根据如图的框图回答后面的问题.
(1)当输入的x值为1时,输出的值为y值多大?要使输出的y值为10,输入的x值应该为多少?
(2)若视x为自变量,y为函数值,试写出函数y=f(x)的解析式;
(3)输入的x值和输出的y值可能相等吗?若能,x的输入值为多少?若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线y2=4x上一点P到直线x=-1的距离与到点Q(2,2)的距离之差的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足an+2an=2an+1(n∈N*),且a1=1,a2=2,则数列{an}的前2014项的乘积为(  )
A、22012
B、22013
C、22014
D、22015

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=sin(2x+θ),(-
π
2
<θ<
π
2
)图象的一条对称轴是x=-
π
8

(1)求θ的值.
(2)求函数?(x)的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a1=2,a2=4,数列{bn}满足:bn=an+1-an,bn+1=2bn+2,
(1)求证:数列{bn+2}是等比数列(要指出首项与公比);
(2)求数列{an}的通项公式;
(3)求数列{nbn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足an+1=
2an,0≤an
1
2
2an-1,
1
2
an<1
,若a1=
6
7
,则a2011的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0且a≠1.命题P:对数loga(-2t2+7t-5)有意义,Q:关于实数t的不等式t2-(a+3)t+(a+2)<0.
(1)若命题P为真,求实数t的取值范围;
(2)若命题P是命题Q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

同步练习册答案