| A. | $\frac{4}{3}$ | B. | $\frac{5}{3}$ | C. | $\frac{15}{8}$ | D. | 2 |
分析 根据向量加法、减法及数乘的几何意义便可得出$\overrightarrow{AM}=\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AD},\overrightarrow{BD}=\overrightarrow{AD}-\overrightarrow{AB}$,代入$\overrightarrow{AC}=λ\overrightarrow{AM}+μ\overrightarrow{BD}$并进行向量的数乘运算便可得出$\overrightarrow{AC}=(λ-μ)\overrightarrow{AB}+(\frac{λ}{2}+μ)\overrightarrow{AD}$,而$\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{AD}$,这样根据平面向量基本定理即可得出关于λ,μ的方程组,解出λ,μ便可得出λ+μ的值.
解答 解:$\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{AD}$,$\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}=\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AD}$,$\overrightarrow{BD}=\overrightarrow{AD}-\overrightarrow{AB}$;
∴$\overrightarrow{AC}$=$λ\overrightarrow{AM}+μ\overrightarrow{BD}$
=$λ(\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AD})$$+μ(\overrightarrow{AD}-\overrightarrow{AB})$
=$(λ-μ)\overrightarrow{AB}+(\frac{λ}{2}+μ)\overrightarrow{AD}$;
∴由平面向量基本定理得:$\left\{\begin{array}{l}{λ-μ=1}\\{\frac{λ}{2}+μ=1}\end{array}\right.$;
解得$λ=\frac{4}{3},μ=\frac{1}{3}$;
∴$λ+μ=\frac{5}{3}$.
故选B.
点评 考查向量加法、减法,及数乘的几何意义,以及向量的数乘运算,相等向量的概念,平面向量基本定理.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 0 | C. | 1+i | D. | 1-i |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com