精英家教网 > 高中数学 > 题目详情
5.已知a为实数,若复数z=(a2-1)+(a+1)i为纯虚数,则$\frac{{a+{i^{2016}}}}{1+i}$的值为(  )
A.1B.0C.1+iD.1-i

分析 利用复数是纯虚数求出a,然后利用复数的幂运算以及复数的除法运算法则化简求解即可.

解答 解:复数z=(a2-1)+(a+1)i为纯虚数,可得a=1,
$\frac{{a+{i^{2016}}}}{1+i}$=$\frac{1+1}{1+i}$=$\frac{2(1-i)}{(1+i)(1-i)}$=1-i.
故选:D.

点评 本题考查复数的代数形式混合运算,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.某地市高三理科学生有15000名,在一次调研测试中,数学成绩ξ服从正态分布N(100,σ2),已知p(80<ξ≤100)=0.35,若按成绩分层抽样的方式取100份试卷进行分析,则应从120分以上的试卷中抽取(  )
A.5份B.10份C.15份D.20份

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.要从编号为1~50的50名学生中用系统抽样方法抽出5人,所抽取的5名学生的编号可能是(  )
A.5,10,15,20,25B.3,13,23,33,43C.1,2,3,4,5D.2,4,8,16,32

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若命题p:?x0∈[-3,3],x${\;}_{0}^{2}$+2x0+1≤0,则命题p的否定是(  )
A.?x0∈(-∞,-3)∪(3,+∞),x${\;}_{0}^{2}$+2x0+1≤0B.?x0∈[-3,3],x${\;}_{0}^{2}$+2x0+1≤0
C.?x∈(-∞,-3)∪(3,+∞),x2+2x+1>0D.?x∈[-3,3],x2+2x+1>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.为了解从事微商的人的年龄分布情况,某调查机构所辖市的A,B两个街区中随机抽取了50名微商的年龄进行了调查统计,结果如表:
 年龄段(岁)20~25  25~3030~40 
 A街区 5 x 10
 B街区 510  y
已知从50名微商中随机抽取一名,抽到年龄在30~40的概率为0.3.
(1)求x,y的值,根据表中数计算两个街区年龄在30岁以下从事微商的概率;
(2)为了解这50名微商的工作生活情况,决定按表中描述的六种情况进行分层抽样,从中选取10名作为一个样本进行跟踪采访,然后再从样本中年龄在25~30的人员中随机选取2人接受电视台专访,求接受专访的2人来自不同街区的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.平面向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,$\overrightarrow{a}$=(0,3),|$\overrightarrow{b}$|=2,若λ∈R,则|λ$\overrightarrow{a}$-$\overrightarrow{b}$|的最小值是$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若直线2ax+by-1=0(a>0,b>0)经过曲线y=cosπx+1(0<x<1)的对称中心,则$\frac{2}{a}$+$\frac{1}{b}$的最小值为3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知定义在R上的偶函数f(x)在x∈[0,+∞)上单调递增,则满足f(2x-1)<f($\frac{1}{3}$)的x的取值范围是(  )
A.($\frac{1}{3}$,$\frac{2}{3}$)B.(-$\frac{1}{3}$,$\frac{2}{3}$)C.($\frac{1}{3}$,$\frac{4}{3}$)D.(-$\frac{1}{3}$,$\frac{4}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,正方形ABCD中,M是BC的中点,若$\overrightarrow{AC}$=λ$\overrightarrow{AM}$+μ$\overrightarrow{BD}$,则λ+μ=(  )
A.$\frac{4}{3}$B.$\frac{5}{3}$C.$\frac{15}{8}$D.2

查看答案和解析>>

同步练习册答案