精英家教网 > 高中数学 > 题目详情
5.已知不等式x2-2x-3<0的解集是A,集合B=(-3,2),不等式x2+ax+b<0的解集是A∩B,那么a=(  )
A.-3B.1C.-1D.3

分析 利用一元二次不等式的解法和根与系数的关系即可得出.

解答 解:∵不等式x2-2x-3<0,∴-1<x<3,∴解集A={x|-1<x<3};
∵B={x|-3<x<2};
∴A∩B={x|-1<x<2}.
∵不等式x2+ax+b<0的解集是A∩B={x|-1<x<2},
∴-1+2=-a,解得a=-1.
故选C.

点评 熟练掌握一元二次不等式的解法及其“三个二次”的关系是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.对于a,b∈(0,+∞),a+b≥2$\sqrt{ab}$(大前提),$x+\frac{1}{x}≥2\sqrt{x•\frac{1}{x}}$(小前提),所以$x+\frac{1}{x}≥2$(结论).以上推理过程中的错误为(  )
A.大前提B.小前提C.结论D.无错误

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图ABCD是正方形,PD⊥面ABCD,PD=DC,E是PC的中点求证:DE⊥面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=$\left\{\begin{array}{l}x+1,x≥0\\{x^2},x<0\end{array}$,则f(f(-3))的值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在参加市里主办的科技知识竞赛的学生中随机选取了40名学生的成绩作为样本,这40名学生的成绩全部在40分至100分之间,现将成绩按如下方式分成6组:第一组,成绩大于等于40分且小于50分;第二组,成绩大于等于50分且小于60分;…第六组,成绩大于等于90分且小于等于100分,据此绘制了如图所示的频率分布直方图.在选取的40名学生中.
(1)求成绩在区间[80,90)内的学生人数及成绩在区间[60,100]内平均成绩;
(2)从成绩大于等于80分的学生中随机选3名学生,求至少有1名学生成绩在区间[90,100]内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如果a>b,则下列不等式正确的是(  )
A.$\frac{1}{a}>\frac{1}{b}$B.2a>2bC.|a|>|b|D.a2>b2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.“a>b”是“3a>3b”的.充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若关于x的不等式(m+1)x2+2(m+1)x-(1-3m)<0的解集为R则实数m的取值范围是(-∞,-1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.甲、乙两人轮流投篮,每人每次投一球,约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为$\frac{1}{3}$,乙每次投篮投中的概率为$\frac{1}{2}$,且各次投篮互不影响.
(1)求甲获胜的概率;
(2)求投篮结束时甲的投篮次数ξ的分布列
(3)ξ的期望和方差.

查看答案和解析>>

同步练习册答案