【题目】设集合
,如果存在
的子集
,
,
同时满足如下三个条件:
①
;
②
,
,
两两交集为空集;
③
,则称集合
具有性质
.
(Ⅰ) 已知集合
,请判断集合
是否具有性质
,并说明理由;
(Ⅱ)设集合
,求证:具有性质
的集合
有无穷多个.
【答案】(Ⅰ)不具有,理由见解析;(Ⅱ)证明见解析
【解析】
(Ⅰ)由条件易得集合
具有性质
,对集合
中的
进行讨论,利用题设条件得出集合
不具有性质
;
(Ⅱ)利用反证法,假设具有性质
的集合
有限个,根据题设条件得出矛盾,即可证明具有性质
的集合
有无穷多个.
解:(Ⅰ)
具有性质
,如可取
;
不具有性质
;理由如下:
对于
中的元素
,
或者![]()
如果
,那么剩下
个元素
,不满足条件;
如果
,那么剩下
个元素
,也不满足条件.
因此,集合
不具有性质
.
(Ⅱ)证明:假设符合条件的
只有有限个,设其中元素个数最多的为
.
对于
,由题设可知,存在
,![]()
满足条件. 构造如下集合
![]()
![]()
![]()
由于![]()
所以![]()
易验证
,
,
对集合
满足条件,而![]()
也就是说存在比
的元素个数更多的集合
具有性质
,与假设矛盾.
因此具有性质
的集合
有无穷多个.
科目:高中数学 来源: 题型:
【题目】2014年7月18日15时,超强台风“威马逊”登陆海南省.据统计,本次台风造成全省直接经济损失119.52亿元,适逢暑假,小明调查住在自己小区的50户居民由于台风造成的经济损失,作出如下频率分布直方图:
![]()
| 经济损失4000元以下 | 经济损失4000元以上 | 合计 |
捐款超过500元 | 30 | ||
捐款低于500元 | 6 | ||
合计 |
(1)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如上表,在表格空白处填写正确数字,并说明是否有
以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否到4000元有关?
(2)台风造成了小区多户居民门窗损坏,若小区所有居民的门窗均由李师傅和张师傅两人进行维修,李师傅每天早上在7:00到8:00之间的任意时刻来到小区,张师傅每天早上在7:30到8:30分之间的任意时刻来到小区,求连续3天内,李师傅比张师傅早到小区的天数的分布列和数学期望.
附:临界值表
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
参考公式:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个盒子中有5只同型号的灯泡,其中有3只一等品,2只二等品,现在从中依次取出2只,设每只灯泡被取到的可能性都相同,请用“列举法”解答下列问题:
(Ⅰ)求第一次取到二等品,且第二次取到的是一等品的概率;
(Ⅱ)求至少有一次取到二等品的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆
的左、右焦点分别为
、
,离心率为
,过焦点
且垂直于x轴的直线被椭圆C截得的线段长为1.
Ⅰ
求椭圆C的方程;
Ⅱ
点
为椭圆C上一动点,连接
,
,设
的角平分线PM交椭圆C的长轴于点
,求实数m的取值范围.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
的圆心为
,
为圆上任意一点,
,线段
的垂直平分线交
于点
.
(1)求点
的轨迹方程;
(2)记点
的轨迹为曲线
,点
,
.若点
为直线
上一动点,且
不在
轴上,直线
、
分别交曲线
于
、
两点,求四边形
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的中心在原点,焦点在
轴上,离心率等于
,它的一个顶点恰好在抛物线
的准线上.
![]()
求椭圆
的标准方程;
点
,
在椭圆上,
是椭圆上位于直线
两侧的动点
当
运动时,满足
,试问直线
的斜率是否为定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,抛物线
的焦点是
,
是抛物线上的点,H为直线
上任一点,A,B分别为椭圆C的上下顶点,且A,B,H三点的连线可以构成三角形.
(Ⅰ)求椭圆C的方程;
(Ⅱ)直线HA,HB与椭圆C的另一交点分别为点D,E,求证:直线DE过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆
经过点
,左、右焦点分别是
,
,
点在椭圆上,且满足
的
点只有两个.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过
且不垂直于坐标轴的直线
交椭圆
于
,
两点,在
轴上是否存在一点
,使得
的角平分线是
轴?若存在求出
,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,椭圆
离心率为
,
、
是椭圆C的短轴端点,且
到焦点的距离为
,点M在椭圆C上运动,且点M不与
、
重合,点N满足
.
![]()
(1)求椭圆C的方程;
(2)求四边形
面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com