精英家教网 > 高中数学 > 题目详情
16.若$\overrightarrow{a}$=(x,1),$\overrightarrow{b}$=(4,x),$\overrightarrow{a}$∥$\overrightarrow{b}$,则实数x=(  )
A.0B.2C.-2D.2或-2

分析 利用向量共线定理即可得出.

解答 解:∵$\overrightarrow{a}$∥$\overrightarrow{b}$,∴x2-4=0,解得x=±2.
故选:D.

点评 本题考查了向量共线定理,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知双曲线的中心在原点,焦点F1、F2在坐标轴上,焦距是实轴长的$\sqrt{2}$倍且过点(4,-$\sqrt{10}$)
(1)求双曲线方程;
(2)若点M(3,m)在双曲线上,求证:点M在以F1F2为直径的圆上;
(3)在(2)条件下,若M F2交双曲线另一点N,求△F1MN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某校高三参加第一次诊断考试后,随机抽取了10名学生的数学成绩(单位:分),用茎叶图列举出来如图.
(1)求抽取样本的平均数$\overline{x}$和样本方差s2
(2)对所有学生得成绩统计发现,数学成绩X服从正态分布N(μ,σ2),其中μ近似为样本平均数$\overline{x}$,σ2近似为样本方差s2,若从所有学生中随机抽取1名,求该生数学成绩在(89.7,120.3)的概率.
附:$\sqrt{106}$≈10.30,P(μ-σ<X<μ+σ)=0.6826,P(μ-2σ<X<μ+2σ)=0.9544.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设(1-2x)2013=a0+a1x+a2x2+…+a2013x2013 (x∈R).
(1)求a0+a1+a2+…+a2013的值;
(2)求a1+a3+a5+…+a2013的值;
(3)求|a0|+|a1|+|a2|+…+|a2013|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x+$\frac{4}{x}$
(1)判断f(x)的奇偶性;
(2)判断f(x)在(2,+∞)上的单调性并予以证明;
(3)求f(x)在[3,4]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=3,且($\overrightarrow{a}$-3$\overrightarrow{b}$)•(2$\overrightarrow{a}$+$\overrightarrow{b}$)=35.
(1)求向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角;
(2)设向量$\overrightarrow{c}$=$\overrightarrow{a}$+λ$\overrightarrow{b}$,当λ∈[0,1]时,求|$\overrightarrow{c}$|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数$f(x)=2\sqrt{3}{sin^2}x-{(sinx-cosx)^2}(x∈R)$.
(1)求f(x)的单调递增区间;
(2)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移$\frac{π}{3}$个单位,得到函数y=g(x)的图象,求$g(-\frac{π}{3})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设a,b是不同的直线,α,β是不同的平面,则下列四个命题中错误的是(  )
A.若a⊥b,a⊥α,b?α,则b∥αB.若a∥α,a⊥β,则α⊥β
C.若a⊥β,α⊥β,则a∥αD.若a⊥b,a⊥α,b⊥β,则α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设m、n是两条不同的直线,α、β是两个不同的平面,则下列命题不正确的是(  )
A.若m⊥n,m⊥α,n?α,则n∥αB.若m⊥β,α⊥β,则m∥α或m?α
C.若m∥α,α∥β,则m∥βD.若m⊥n,m⊥α,n⊥β,则α⊥β

查看答案和解析>>

同步练习册答案