精英家教网 > 高中数学 > 题目详情
8.设函数$f(x)=2\sqrt{3}{sin^2}x-{(sinx-cosx)^2}(x∈R)$.
(1)求f(x)的单调递增区间;
(2)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移$\frac{π}{3}$个单位,得到函数y=g(x)的图象,求$g(-\frac{π}{3})$的值.

分析 (1)利用二倍角和辅助角公式化简,结合三角函数的性质可得f(x)的单调递增区间;
(2)用三角函数的平移变换规律,求解出g(x)的解析式,即可求出$g(-\frac{π}{3})$的值.

解答 解:函数$f(x)=2\sqrt{3}{sin^2}x-{(sinx-cosx)^2}(x∈R)$.
化简可得:f(x)=$2\sqrt{3}(\frac{1}{2}-\frac{1}{2}cos2x)$-1+2sinxcosx
=sin2x-$\sqrt{3}$cos2x+$\sqrt{3}-1$=2sin(2x-$\frac{π}{3}$)+$\sqrt{3}-1$
即$f(x)=2sin(2x-\frac{π}{3})+\sqrt{3}-1$,
由$2kπ-\frac{π}{2}≤2x-\frac{π}{3}≤2kπ+\frac{π}{2},(k∈Z)$,
得:$kπ-\frac{π}{12}≤x≤kπ+\frac{5π}{12},(k∈Z)$,
∴f(x)的单调递增区间是$[kπ-\frac{π}{12},kπ+\frac{5π}{12}],(k∈Z)$.
(2)由(1)知,$f(x)=2sin(2x-\frac{π}{3})+\sqrt{3}-1$,
把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到$f(x)=2sin(x-\frac{π}{3})+\sqrt{3}-1$的图象,再把得到的图象向左平移$\frac{π}{3}$个单位,得到$f(x)=2sinx+\sqrt{3}-1$的图象,
即$g(x)=2sinx+\sqrt{3}-1$.
那么:$g(-\frac{π}{3})=2sin(-\frac{π}{3})+\sqrt{3}-1=-1$.

点评 本题主要考查三角函数的图象和性质,平移变换的规律,利用三角函数公式将函数进行化简是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.如图是一个正三棱柱挖去一个圆柱得到的一个几何体的三视图,则该几何体的体积与挖去的圆柱的体积比为(  )
A.$\frac{{3\sqrt{3}}}{π}-1$B.$\frac{{3\sqrt{3}}}{π}-\frac{1}{3}$C.$\frac{{3\sqrt{3}}}{π}$D.$\frac{{3\sqrt{3}}}{π}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某厂商调查甲、乙两种不同型号电视在10个卖场的销售量(单位:台),并根据这10个卖场的销售情况,得到如图所示的茎叶图.为了鼓励卖场,在同型号电视机的销售中,该厂商将销售量高于数据平均数的卖场命名为该型号电视机的“星级卖场”
(1)求在这10个卖场中,甲型号电视机的“星级卖场”的个数;
(2)若在这10个卖场中,乙型号电视机销售量的平均数为26.7,求a>b的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若$\overrightarrow{a}$=(x,1),$\overrightarrow{b}$=(4,x),$\overrightarrow{a}$∥$\overrightarrow{b}$,则实数x=(  )
A.0B.2C.-2D.2或-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图1是四棱锥的直观图,其正(主)视图和侧(左)视图均为直角三角形,俯视图外框为矩形,相关数据如图2所示.

(1)设AB中点为O,在直线PC上找一点E,使得OE∥平面PAD,并说明理由;
(2)若二面角P-AC-D的平面角的余弦值为$\frac{{\sqrt{6}}}{6}$,求四棱锥P-ABCD的外接球的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<π) 的图象如图所示,则ω=$\frac{3}{2}$;φ=$-\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若${({\sqrt{x}-\frac{1}{{\root{3}{x}}}})^n}$展开式中存在常数项,则n的最小值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(Ⅰ)求证:$\sqrt{3}$+$\sqrt{7}$<2$\sqrt{5}$
(Ⅱ)若a,b,c是实数,求证:a2+b2+c2≥ab+bc+ca.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知i是虚数单位,复数$z=\frac{a-i}{1-i}({a∈R})$,若|z|=1,则a=(  )
A.±1B.1C.-1D.$±\frac{1}{2}$

查看答案和解析>>

同步练习册答案