精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=x+$\frac{4}{x}$
(1)判断f(x)的奇偶性;
(2)判断f(x)在(2,+∞)上的单调性并予以证明;
(3)求f(x)在[3,4]上的值域.

分析 (1)利用函数的奇偶性的定义,判断函数的奇偶性.
(2)利用函数的单调性的定义,判断函数的单调性.
(3)函数的单调性求出f(x)在[3,4]上的值域.

解答 解:(1)f(x)的定义域为(-∞,0)∪(0,+∞),关于原点对称,
再根据$f(-x)=-x-\frac{4}{x}=-f(x)$,可得f(x)为奇函数.
(2)任取x1,x2∈[2,+∞),令 x1<x2,∵$f({x_1})-f({x_2})={x_1}+\frac{4}{x_1}-({x_2}+\frac{4}{x_2})$=${x_1}-{x_2}+\frac{{4({x_2}-{x_1})}}{{{x_1}{x_2}}}=({x_1}-{x_2})(1-\frac{4}{{{x_1}{x_2}}})$=$\frac{{({x_1}-{x_2})({x_1}{x_2}-4)}}{{{x_1}{x_2}}}$,
因为x1-x2<0,x1x2>4,所以f(x1)-f(x2)<0,即f(x1)<f(x2),
所以f(x)在[2,+∞)上是增函数.
(3)因为f(x)在[2,+∞)上是增函数,[3,4]⊆[2,+∞),所以f(x)在[3,4]上是增函数,
∴$f{(x)_{max}}=f(4)=5,f{(x)_{min}}=f(3)=\frac{10}{3}$,∴f(x)的值域为$[{\frac{10}{3},5}]$.

点评 本题主要考查函数的奇偶性的判断方法,函数的单调性的定义和证明方法,利用函数的单调性求函数的值域,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知数列{an}和{bn}满足a1a2a3…an=2${\;}^{{b}_{n}}$(n∈N*).若{an}是各项为正数的等比数列,且a1=2,b3=b2+3.
(Ⅰ)求an与bn
(Ⅱ)设cn=$\frac{1}{a_n}-\frac{1}{b_n}$,求数列{cn}的前n项和为Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若圆x2+y2+dx+ey+f=0与两坐标轴都相切,则常数d,e,f之间的关系是(  )
A.d≠0且e2=4fB.d≠0且e2≠4fC.d=e且e2≠4fD.d2=e2=4f>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某厂商调查甲、乙两种不同型号电视在10个卖场的销售量(单位:台),并根据这10个卖场的销售情况,得到如图所示的茎叶图.为了鼓励卖场,在同型号电视机的销售中,该厂商将销售量高于数据平均数的卖场命名为该型号电视机的“星级卖场”
(1)求在这10个卖场中,甲型号电视机的“星级卖场”的个数;
(2)若在这10个卖场中,乙型号电视机销售量的平均数为26.7,求a>b的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知{an}为等比数列且满足a6-a2=30,a3-a1=3,则数列{an}的前5项和S5=(  )
A.15B.31C.40D.121

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若$\overrightarrow{a}$=(x,1),$\overrightarrow{b}$=(4,x),$\overrightarrow{a}$∥$\overrightarrow{b}$,则实数x=(  )
A.0B.2C.-2D.2或-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图1是四棱锥的直观图,其正(主)视图和侧(左)视图均为直角三角形,俯视图外框为矩形,相关数据如图2所示.

(1)设AB中点为O,在直线PC上找一点E,使得OE∥平面PAD,并说明理由;
(2)若二面角P-AC-D的平面角的余弦值为$\frac{{\sqrt{6}}}{6}$,求四棱锥P-ABCD的外接球的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若${({\sqrt{x}-\frac{1}{{\root{3}{x}}}})^n}$展开式中存在常数项,则n的最小值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知变量x,y(x,y∈R)满足约束条件$\left\{{\begin{array}{l}{x-y≤0}\\{x+y≥5}\\{y-3≤0}\end{array}}\right.$,若不等式(x+y)2≥c(x2+y2)(c∈R)恒成立,则实数c的最大值为$\frac{25}{13}$.

查看答案和解析>>

同步练习册答案